
Chehalis Basin Strategy: Reducing Flood Damage and Enhancing Aquatic Species

Aquatic Species Enhancement Plan

Policy Work Group Meeting Chehalis, Washington September 25, 2014

Overview of Study - Salmon

- Scope: Upstream of and including the Wynoochee River
- EDT model: Spring- and fall-run Chinook, coho, steelhead
- Enhancement culverts, riparian maturation in managed forests, riparian enhancement and installation of wood in other lands, off-channel reconnection
 - Low combo: Culverts, managed forests (low range), other lands (low range)
 - High combo: Culverts, managed forests (high range), other lands (high range)
- Climate
 - Low and High scenarios of wetter winters, drier summers and warmer temperatures

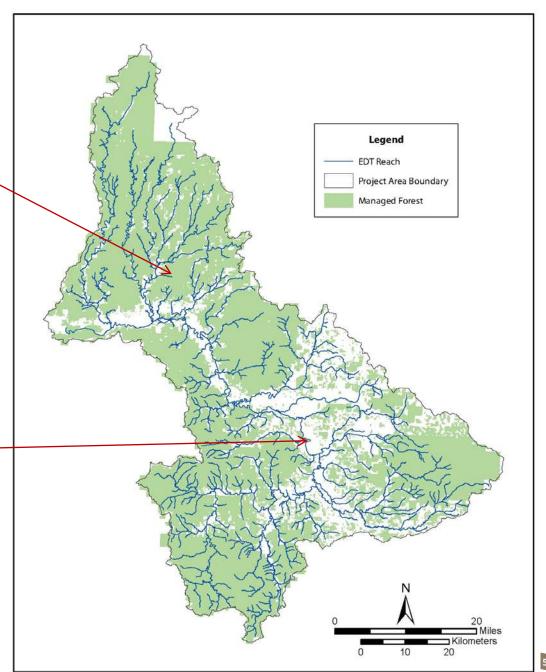
Current Status of Salmon Habitat (EDT)

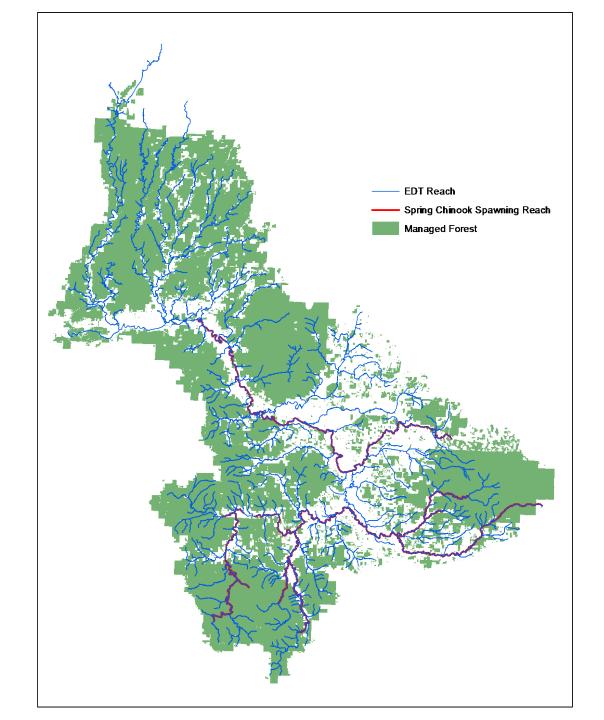
• Degraded

Impairment varies by species and tributary

 Spring-run Chinook salmon: 	78%
 Fall-run Chinook salmon: 	45%
 Coho salmon: 	69%
	A A O /

• Steelhead: 44%


Conclusion: Large potential for enhancement


Barrier Removal

- Action:
 - Removed 169 high priority culverts
 - 11 State owned; 158 on non-State owned land
- Results:
 - Coho +8.5% Steelhead +8.2%
 - Fall-run Chinook +1% Spring-run Chinook 0%
- Assumptions:
 - Repairs are effective and do not fail over time
 - 169 of ~2,200 culverts in basin included
 - Spring-run Chinook do not inhabit reaches above barriers

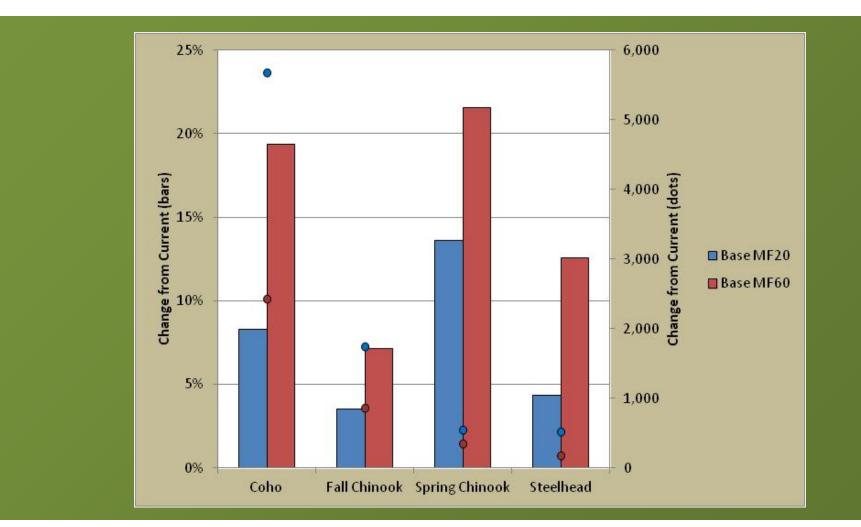
Restoration in Managed Forest Lands (green) ~

Restoration in Non-managed Forest Lands (white)

Stream Miles of Enhancement

Stream/reach	Managed Forest	NMF - 50%	NMF - 75%
Wynoochee	98	-	-
Satsop	149	-	-
Lower Chehalis (Porter to Skookumchuck)	23	16	27
Middle Chehalis (Elk to Newaukum)	26	18	20
Skookumchuck	31	13	16
Newaukum	72	12	28
South Fork	95	7	12
Elk	51	2	2
Upper Chehalis above dam	56	-	-
TOTAL	789	73	112

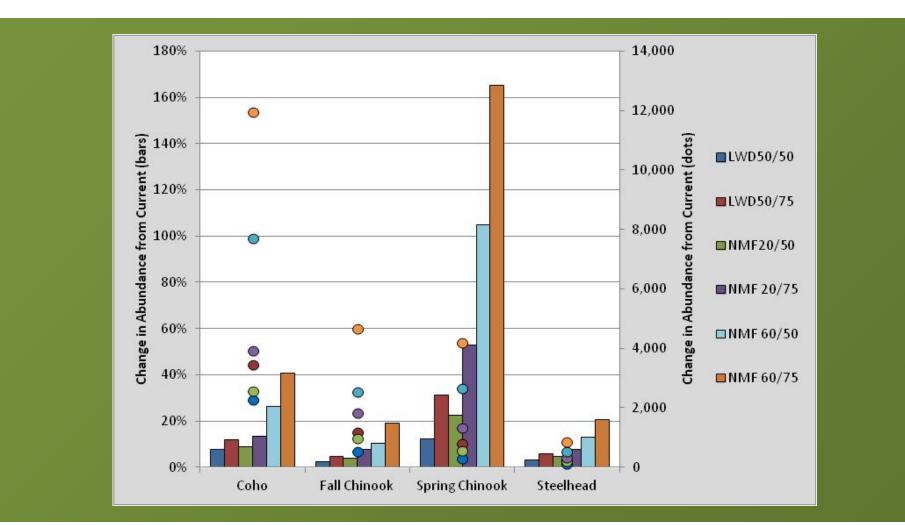
Managed Forest - Riparian Buffers


• Action:

- Model riparian conditions increased by 20% and 60%
- <u>Wood added</u>*, <u>temperature reduced</u>*, channel complexity increased, sediment reduced (*key response variables)
- Results: +3 to +22%; largest benefit to coho and spring-run Chinook

• Assumptions:

- Functional response occurs over 100-year period; can be achieved; wood stays in system
- No change in baseline over time

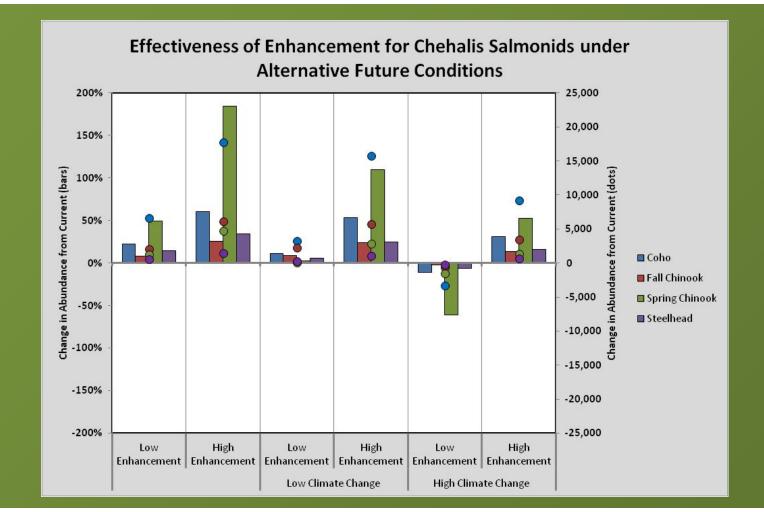

Results of Managed Forest Riparian Maturation (bars are %'s; dots are #'s)

Lands Outside of Managed Forests

- Actions:
 - Short-term: Added large wood to channel for immediate response
 - Long-term: Restored riparian conditions by 20% and 60%, over 50% and 75% of spring-run Chinook salmon reaches
 - <u>Wood added</u>*, <u>temperature</u> <u>reduced</u>*, channel complexity increased, sediment reduced
- Results: Largest increase to spring-run Chinook; action has to be <u>effective</u> and <u>extensive</u> to see large increases
- Assumptions:
 - Functional response occurs over 100-year period; can be achieved; wood stays in system
 - No change in baseline over time

Lands Outside Managed Forests (bars are %'s; dots are #'s)

Combining Enhancement Actions (High and Low)

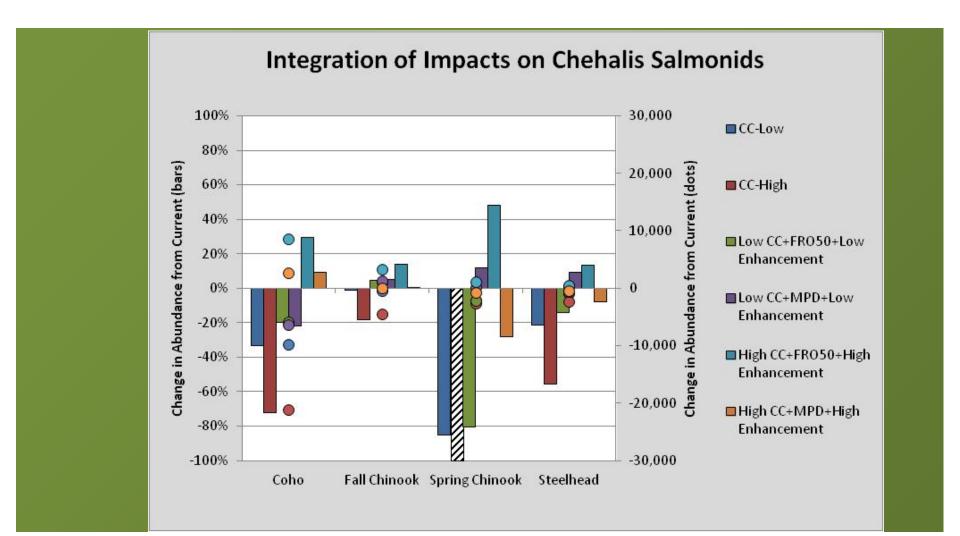

• Results:

- Spring-run Chinook and coho had largest benefit
- Synergistic effects from combining; to achieve large effect need High Enhancement (enhancement had to be <u>effective</u> and <u>extensive</u>)

• Assumptions:

- Targeted spring-run Chinook; if targeted other species, responses would be somewhat different
- Functional response can be achieved; wood stays in system
- No change in baseline over time

Habitat Enhancement Combinations + Climate Change (relative to current base case; bars are %'s; dots are #'s)


Key Findings – Salmon Habitat Enhancement + Climate

- Spring-run Chinook had largest % increases from enhancement because they were targeted
- Enhancement can mute climate impacts
- To achieve results, need to
 - Combine enhancement actions (culverts, managed forest, other lands)
 - Enhancement has to be <u>effective</u> and <u>extensive (i.e, High</u>) to partially overcome the effects of future climate scenarios
- Key assumptions:
 - No change in current baseline (but it will change!)

Water Retention Structures + Habitat Enhancement + Climate

- Many combinations < 0 (climate is a major driver of the response)
- The High Enhancement scenario was typically needed to overcome climate
- Assumptions:
 - MPD results sensitive to key assumption of whether MPD or Enhancement controls temperature downstream of dam
 - No degradation in baseline over time other than climate
 - Habitat benefits assume functional response can be achieved; wood stays in system; culverts continue to function

Water Retention Structures, Habitat Enhancement, and Climate Combined (bars are %'s; dots are #'s)

Major Conclusions:

Water Retention Structures + Habitat + Climate

- The water retention options (MPD and FRO) in general negatively impacted salmon; assumption of cool water benefit from MPD for springrun Chinook salmon needs validation
- Both High and Low Enhancement Scenarios positively affected fish populations
- Climate change is major factor only the high enhancement scenario offset the high climate scenarios
- Climate change could lead to a major decline for all salmon and steelhead, and the extirpation of spring-run Chinook salmon in the basin and some populations of other species. Given the potential magnitude and uncertainty, climate warrants a more in-depth risk assessment

Major Conclusions: Water Retention Structures + Habitat + Climate

- Enhancement had to be <u>effective</u> and <u>extensive</u> to overcome the effects of future climate scenarios and water retention alternatives
- In most cases the modeled results and underlying assumptions need tested and validated, especially with respect to the interactions between enhancements and dam effects
- Sequencing of enhancement actions is critical to achieving the predicted results (i.e., both short-term and long-term actions are needed)

Off-channel (Floodplain) Enhancement

• Actions:

- Large mainstem project (24,000'; 11 to 16+ acres; \$5.7 M)
- Small Skookumchuck project (1,100'; 0.5 acre; \$ 0.5 M)
- Results:
 - Small effect on salmonids (from 0 to < 1%)(designed primarily to address the needs of Other Fish and Non-fish species)
 - Local populations benefitted
- Assumptions:
 - Functional response can be achieved
 - No consideration of non-native predators entering site
 - No change in baseline over time

Enhancement Cost Estimates

- Barrier removal: \$35 M (average; \$31 M nonstate)
- Riparian enhancement in lands other than managed forests:
 - 50% \$ 64 M (average)
 - 75% \$ 96 M (average)

• Off channel: \$6 M/large project

Uncertainties

- Enhancement has to be effective and extensive
- Need to ensure enhancement measures stay in place and are allowed to provide benefit
- Future baseline:
 - Included high/low climate scenarios, but high uncertainty associated with future climate predictions
 - Did not include human land use policies and development pressures, although they will almost certainly change

Key Findings – Other Fish and Non-fish Species

- No restoration or enhancement projects were modeled due to a lack of specific design information
- Habitat actions that focused on salmon were reviewed and thought to be positive or have no effect for Other Fish and Non-fish species
- Effects on Other Fish and Non-fish species carry high uncertainty (e.g., effects of non-native predators)
- Monitoring and research will be needed to evaluate enhancement actions for Other Fish and Non-fish and ensure salmon habitat enhancement is neutral or positive

Next Steps – Salmon

- Studies to better understand Chehalis Basin salmon life history diversity (e.g., yearling Chinook)
- Survey culverts and develop culvert removal strategy and priority
- Add Chum salmon to EDT
- Additional studies to refine assumptions and effects of climate change

Next Steps – Other Fish and Non-fish Species

- Surveys of species to determine/verify abundance and distribution, life histories, habitat use, and limiting factors
- Non-native predator monitoring to better inform habitat restoration project design and location