

Request for Input on Walla Walla Basin Pump Exchange

Chris Kowitz, Oregon Water Resources Department Chris Marks, Confederated Tribes of the Umatilla Indian Reservation

CRPAG Meeting October 3, 2024

Agenda

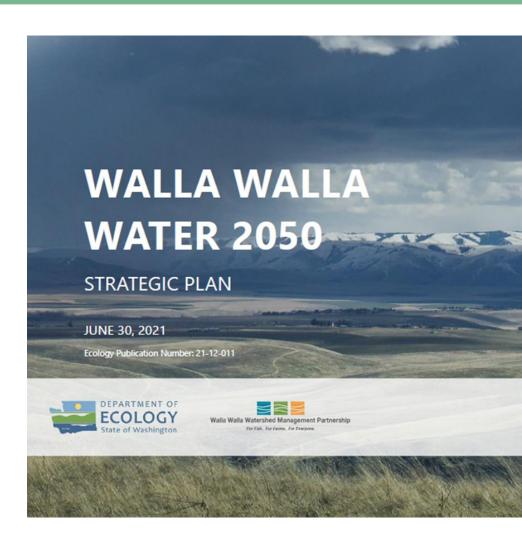
- 1. Introductions and Meeting Objectives
- 2. Walla Walla Basin Background and Context
- 3. Bi-State Flow Study Recap
- 4. Project Overview and Pump Exchange Summary
- 5. Exchange and Mitigation Considerations
- 6. Stakeholder Feedback
- 7. Questions and Discussion

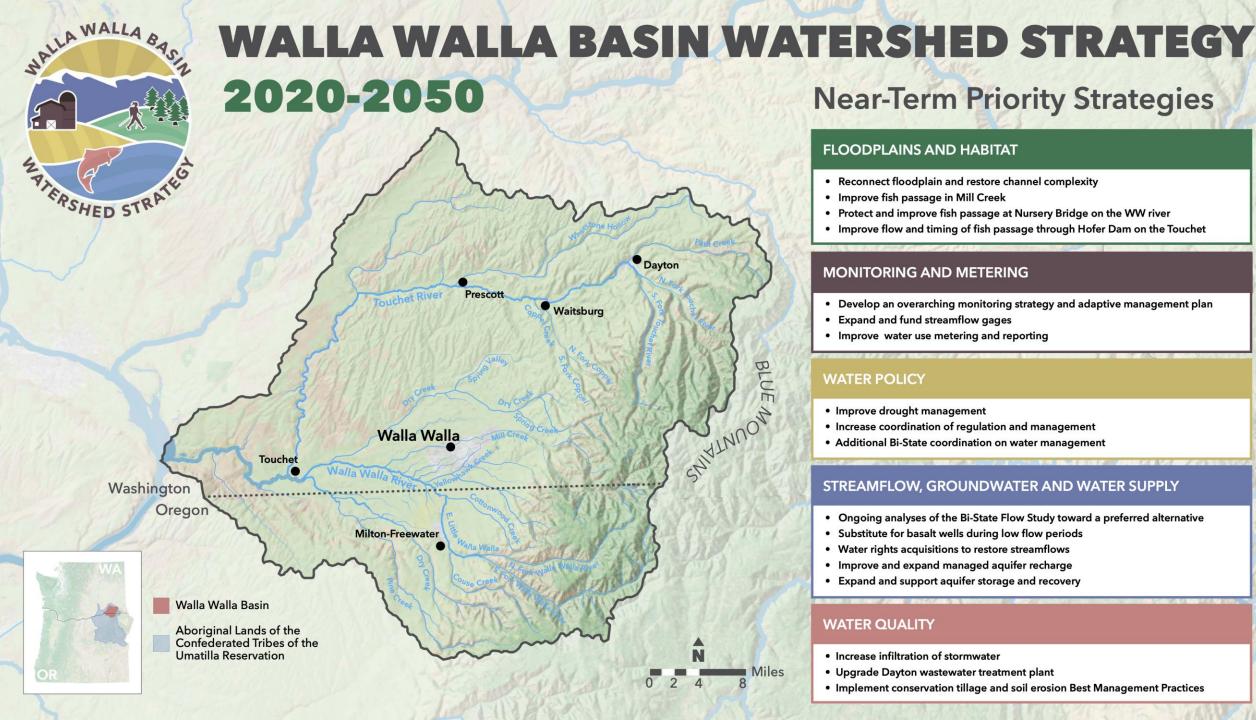
Meeting Objectives for Today

- 1. Walla Walla Basin Planning Overview
- 2. Recap of Bi-State Flow Study
- 3. Present an informal briefing on a potential new future Water Right Application for Withdrawal for Columbia River Pump Exchange
- 4. Provide an opportunity to raise preliminary questions and provide input related to proposal

Walla Walla Basin Planning Overview

Walla Walla Basin Planning


Walla Walla Basin Strategic Plan


- 30-year effort to improve streamflow and water supplies in the Walla Walla watershed
- Employs an integrated water resource management approach
- Integrates goals and solutions from the basin's diverse stakeholders in both Washington and Oregon

Near-Term Priority Strategies

FLOODPLAINS AND HABITAT

- Reconnect floodplain and restore channel complexity
- Improve fish passage in Mill Creek
- Protect and improve fish passage at Nursery Bridge on the WW river
- . Improve flow and timing of fish passage through Hofer Dam on the Touchet

MONITORING AND METERING

- Develop an overarching monitoring strategy and adaptive management plan
- Expand and fund streamflow gages
- · Improve water use metering and reporting

WATER POLICY

- Improve drought management
- · Increase coordination of regulation and management
- Additional Bi-State coordination on water management

STREAMFLOW, GROUNDWATER AND WATER SUPPLY

- Ongoing analyses of the Bi-State Flow Study toward a preferred alternative
- Substitute for basalt wells during low flow periods
- · Water rights acquisitions to restore streamflows
- Improve and expand managed aquifer recharge
- Expand and support aquifer storage and recovery

WATER QUALITY

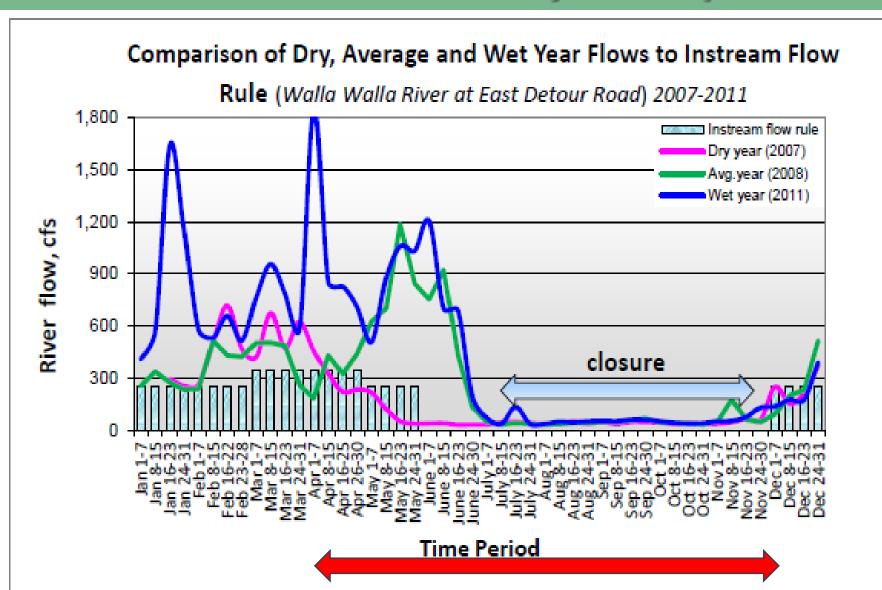
- Increase infiltration of stormwater
- Upgrade Dayton wastewater treatment plant
- Implement conservation tillage and soil erosion Best Management Practices

Walla Walla Basin Planning

- Strategic Plan implementation
 - Bi-State Flow Study
 - Primary focus on restoring flow in the Walla Walla River
- US BOR Basin Study
 - Development of a Riverware model
 - Evaluate water supply projects to ensure goals are met
 - Bi-State Flow Study to be incorporated with the BOR Study
- USGS Groundwater Basin Study
 - Data collection currently underway
 - Final report scheduled to be published in early 2026
- Bi-State water management framework

Bi-State Flow Study Project Recap

Objective of the Bi-State Flow Study


The primary objective of the Flow Study is to improve streamflow in the Walla Walla River mainstem to support harvestable populations of native fish species, while maintaining the long-term viability of agricultural, municipal, commercial, and residential uses of water.

Why are we doing this?

- For the past 100 years, flows in the Walla Walla River have been reduced significantly and some reaches of the river are dry.
- Spring Chinook Salmon were extirpated in the early 1900s.
- Bull Trout and Steelhead were listed as threatened under the Endangered Species Act in the late 1990s.
- The CTUIR have built and are operating a fish hatchery on the South Fork Walla Walla to reintroduce salmon, and more water is needed instream.
- Existing agriculture is central to local communities and the regional economy.

How are we doing this?

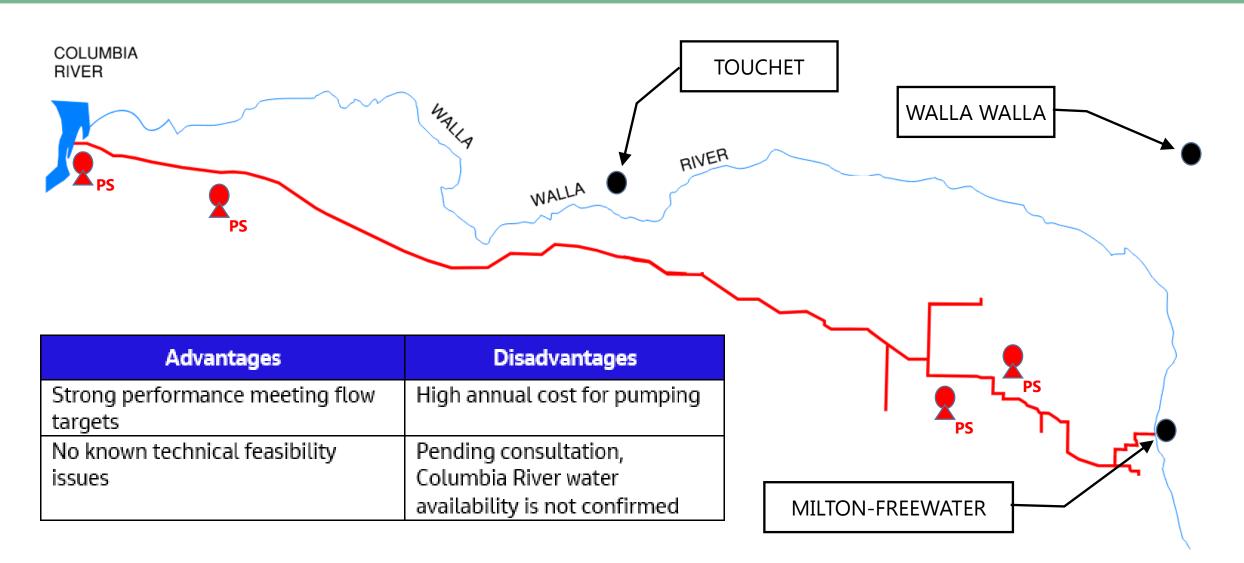
- The Bi-State Flow Study has been a multiple-year planning project in the Walla Walla Basin.
- The primary objective of the project is to increase and protect water instream from the City of Milton Freewater to the Columbia River.
- This would be accomplished by 'exchanging' water with two irrigation districts in Oregon – the districts would receive water from the Columbia River and, in exchange, would leave their senior surface water in the Walla Walla River.
- Recently, legislation in both states will allow for this water to be protected in Oregon and Washington.

New Target Flows

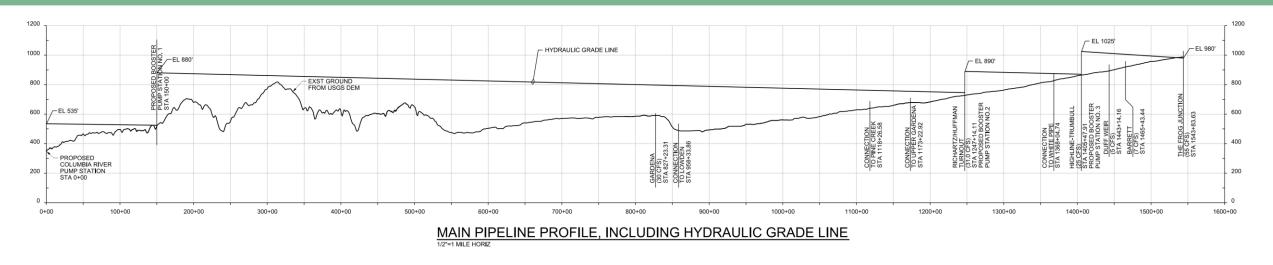
- April 1 June 15 = 150 cfs
- June 16 June 30 = 100 cfs
- July 1 November 30 = 65 cfs

Pump Exchange Project Overview

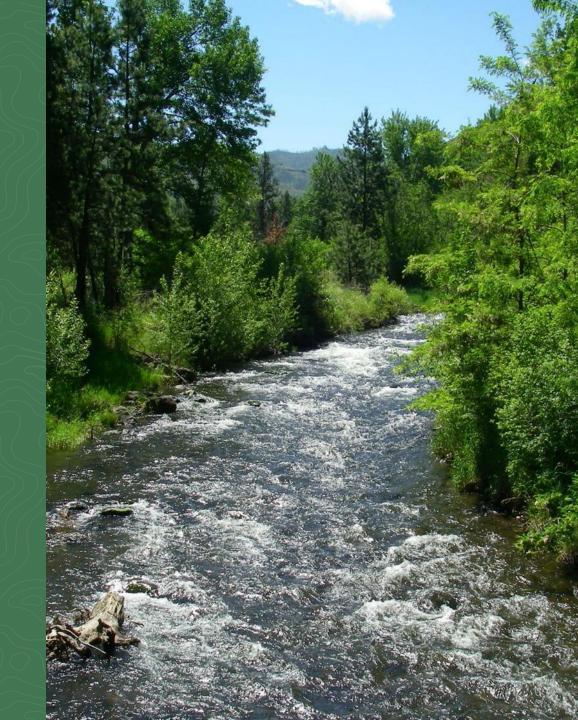
Columbia River Pump Exchange Project Overview


Columbia River Pump Exchange

- Concept modeled after Umatilla River Basin Project
- Instead of diverting Walla Walla River water, irrigators would utilize Columbia River Water
- Instream flows would be protected



120 cfs Columbia River Pump Exchange



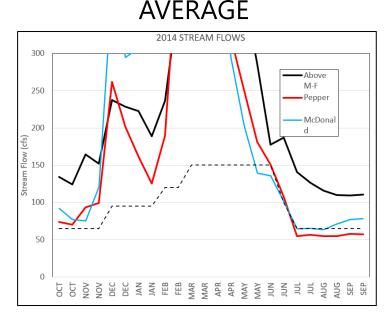
120 cfs Columbia River Pump Exchange Project Overview

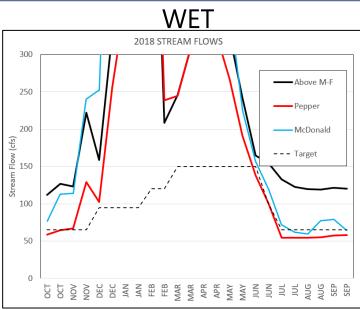
- 39.9 miles of pipeline from 18 60 inches in diameter
- One main pump station (3800 hp)
- Three booster pump stations (7600 hp, 2200 hp, 1200 hp)
- Fish screens and intake at the Columbia River
- Total dynamic head of ~880 feet
- Effectively replaces current irrigation flows to restore water to the mainstem WWR for ecological advancements

The System is Dynamic and Complex

We modeled how the pump exchange would perform over different hydrologic conditions.

Meets Target!


Almost Meets Target


Doesn't Meet Target

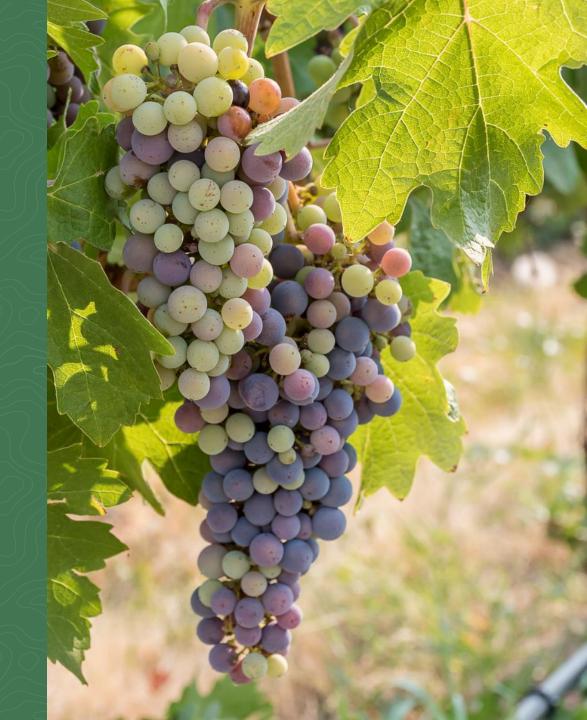
Project Performance w/ WWRID & HBDIC Replacement Summary Comparison of Dry, Average, and Wet Stream Flows

In-Stream Attainable Flow Performance (WY 2015 - Drv)																	(WY 2014 - Ave	age)												VY 2018 - Y	(Mat)											-	
iii saraaiii			Mgt Pt 2 - Nursery	Mgt Pt 3	Mgt Pt 3 - Pepper		Mgt Pt 5 - Detour		Mgt Pt 6 -		Mgt Pt 7 - Touchet				Mgt Pt 2 - Nursery		Mgt Pt 3 - Pepper				Mgt Pt 5 - Detour		Mgt Pt 6 -		Mgt Pt 7 - Touchet						3 - Pepper				- Detour	etour Mgt Pt 6 -		7 - Touchet	et				
		Freew	water Bridge		Brid	Bridge		Mgt Pt 4 - Beet Road Road		Road	McDonald Road		Confluence		Mgt Pt 8 - Pierce RV		Bridge		Bridge		Mgt Pt 4 - Beet Road		Road		McDonald Road		Confluence		Vigt Pt 8 - Pierce R		Bridge				Mgt Pt 4 - Beet Road		oad	McDonald Ro				Mgt Pt 8 - Pierce RV	
	Instream	WWR			WWR		WWR		wwn	,	WWR		WWR		WWR				WWR		WWR		wwr		wwr		WWR		WWR			wwr	T	WWR		wwR		WWR	wwr		wwr		
	Flow	Flow		WWR Flow	Flour		Flow		Flow		Flow		Elou		Flow	10000000	WWR Flow		Flow		Flow		Flow		Flour		Flour		Flow	WWR FI		Flow		Flour		Flow		Elou	Flow		Flow		
	Targets	(cfs)	% Min	(cfs) % Mir	(cfe)	% Min	(cfs)	% Min	(cfs)	% IVIII	(cfs)	76 IVIII	(cfe)	% Min	(cfs)	% Min	(cfs)	% Min	(cfs)	% Min	(cfs)	% Min	(cfs)	% Min	(cfe)	% Min	(cfc)	Min	(cfe) % IVIII	(cfs)	% Mir	(cfe)	% Min	(ofe)	% Min	(cfs)	% Min	(cfe) % [VIIII (cfe)	76 IVIIII	(cfs)	% Min	
Month	(cfs)	2.2	Target	Targe		Target	()	Target	100	Target		Target		Target	200	Target		Target	(/	Target	(/	Target		Target		Target		arget	rarget		Targe		Target		Target		Target	· · lar	get (CIS)	Target	(6.5)	Target	
OCT	65	97	100%	73 100%	57	81%	67	83%	79		63	97%		98%	18	98%	87	100%	74	100%	67	100%	115	100%	92	100%		.00%	62 100%	73	100%	58	89%	56	86%	103	92%	77 10		100%	24	100%	
OCT	65	103	100%	131 100%	109	100%	/6	100%	101		51	68%	113	82%	35	80%	85	100%	93	100%	62 65	94%	92 108	97%	7//	100%	127 1 162 1	.00%	48 100% 61 100%	77	100%	64	97%	59	89%	126	95%	113 10	0% 196	100%	106	100%	
NOV	65	110	100%	239 100%	217	100%	101	100%	144		65	98%	169	99%	97	99%	115	100%	93	100%	65	99%	108	100%	121	100%	307 1	00%		80	100%	, 0,	100%	60	90%	140	96%	114 10	0% 228	100%	140	100%	
NOV	65	162	100%	295 100%	273	100%	126	100%	226		65	100%	356	100%	252	100%	121 284	100%	262	100%	232	100%	378	100%	393	100%	758 1	00%	129 100% 1071 100%	113	100%	129	100%	130	100%	240	100%	240 10	0% 569	100%	446 380	100%	
DEC	95	188	100%	320 100%	298	100%	178	100%	309	100000000000000000000000000000000000000	49	51%	631	93%	371	91%	224	100%	202	100%	208	100%	293	100%	295	100%	618 1	00%	391 100%	103	100%	102	100%	486	100%	684	100%	252 10 744 10	0% 4/3	100%	1110	100%	
DEC	95	258	100%	388 100%	366	100%	297	100%	508		201	100%	1050	100%	892	100%	183	100%	161	100%	197	100%	316	100%	307	100%	747 1	00%	451 100%	111 261	100%	372	100%	647	100% 100%	877	100%	1193 10	0% 1360	100%	1904	100% 100%	
JAN	95	330	100%	442 100%	420	100%	362	100%	584		338		1123	100%	1015 1016	100%	147	100%	125	100%	168	100%	259	100%	318	100%	581 1	00%	367 100%	364	100%	342	100%	586	100%	747	100%	853 10	0% 1704	100%	1580	100%	
JAN	95	298	100%	434 100%	660	100%	686	100%	569 1037		692	20070	1799	100%	1707	100%	211	100%	189	100%	291	100%	393	100%	466	100%	832 1	00%	547 100%	762	100%	740	100%	808	100%	1296	100%	1600 10	0% 2486	100%	2/15	100%	
FEB	120 120	653 290	100%	682 100% 329 100%	307	100%	305	100%	471		447		948	100%	875	100%	468	100%	446	100%	519	100%	639	100%	877	100%	1771 1	00%	1637 100%	260	100%	238	100%	213	100%	493	100%	463 10	0% 2480	100%	917	100%	
PEB	150	188	100%	113 80%	175	060	120	100%	211	000%	221	900/	432	0.40/	361	95%	847	100%	825	100%	1018	100%	1381	100%	1418	100%	2996 1	00%	2888 100%	266	100%	244	100%	238	100%	504	100%	482 10	0% 1119	100%	910	100%	
MAR	150	206	100%	154 100%	179	100%	152	100%	204	100%	241	100%	752	100%	676	100%	431	100%	409	100%	446	100%	659	100%	581	100%	1562 1	00%	1202 100%	330	100%	308	100%	423	100%	438	100%	633 10	0% 1423	100%	1189	100%	
APR	150	226	100%	176 100%	191	100%	151	100%	271	100%	241	100%	615	100%	593	100%	468	100%	443	100%	385	100%	586	100%	494	100%	1342 1	.00%	1040 100%	448	100%	423	100%	750	100%	837	100%	1086 10	0% 2053	100%	1/29	100%	
APR	150	192	100%	186 100%	154	100%	150	99%	219	100%	183	100%	396	100%	361	100%	344	100%	319	100%	271	100%	439	100%	294	100%	1000 1	.00%	601 100%	352	100%	327	100%	609	100%	703	100%	824 10	0% 1544	100%	1310	100%	
MAY	150	164	100%	150 98%	129	100%	136	100%	164		134	89%	242	94%	84	94%	274	100%	249	100%	247	100%	372	100%	203	100%	815 1	.00%	416 100%	151	100%	267	100%	326	100%	406	100%	365 10	0% 847	100%	631	100%	
MAY	150	146	100%	140 98%	120	100%	127	100%	156	100%	135	89%	239	94%	50	93%	150	100%	181	100%	193	100%	236	100%	139	93%	449	98%	195 97%	151	100%	191	100%	192	100%	249	100%	225 10	0% 475	100%	337	100%	
JUN	150	120	100%	109 98%	90	100%	97	100%	117	100%	103	91%	154	94%	-22	93%	158	100%	151	100%	145	96%	168	97%	136	90%	219	94%	59 93%	154	98%	138	100%	137	91%	174	93%	157 96	5% 267	97%	127	97%	
HIM	100	102	100%	92 100%	72	100%	95	100%	96	100%	75	990/	01	90%	-10	90%	115	100%	107	100%	112	100%	139	100%	101	100%	203 1	.00%	86 100%	118	97%	101	99%	109	100%	134	100%	119 10	0% 192	100%	100	100%	
JUL	65	98	100%	73 87%	54	93%	72	95%	76	96%	61	93%	65	93%	4	93%	73	85%	54	83%	76	87%	80	88%	64	98%	97	98%	53 99%	73	81%	54	83%	74	87%	89	89%		0% 103	100%	52	100%	
JUL	65	101	100%	73 89%	54	96%	76	97%	74	98%	58	88%	59	88%	1	89%	73	100%	57	85%	79	89%	69	88%	65	99%	79	99%	16 99%	73	80%	54	83%	69	86%	76	88%	62 95	5% 72	95%	12	96%	
AUG	65	100	100%	73 90%	54	96%	70	97%	72		59	86%	55	85%	-1	87%	73	100%	55	90%	70	92%	69	91%	64	96%	66	97%	10 97%	73	82%	55	83%	67	86%	70	79%	59 89	9% 60	90%	-3	90%	
AUG	65	102	100%	73 91%	54	93%	71	95%	76	96%	59	89%	58	89%	-6	89%	73	100%	55	99%	78	99%	86	98%	/1	100%		.00%	25 100%	73	83%	55	84%	69	87%	78	87%	77 10	0% 83	100%	15	100%	
SEP	65	116	100%	73 86%	57	87%	84	91%	92	91%	86	100%	88	100%	27	100%	73	100%	57	9/%	81 85	98%	89	9/%	77	100%	89 1 85 1	.00%	29 100% 22 100%	73	86%	58	88%	67	89%	74	81%	79 10	0% 87	100%	34	100%	
SEP	65	113	100%	73 86%	57	88%	75	90%	85	84%	65	93%	69	93%	17	94%	/3	100%	5/	88%	83	92%	92	91%	/8	100%	გე 1	.00%	22 100%		87%	58	88%	56	85%	65	88%	64 97	7% 70	98%	2	97%	
	•		•											•																													
DRY											AVERAGE												WET																				
DK1											AVENAGE												VV 🗆 I																				

Above M-F Pepper McDonald Target

Pump Exchange Considerations

Pump Exchange Summary


1. Proposed new Columbia River Pump Exchange

- In exchange for existing Walla Walla River irrigation water rights (Oregon)
- Bypass streamflow at Walla Walla River / Little Walla Walla River diversion
- Bypassed streamflow protected to Columbia River
- Pump Columbia River water up into Walla Walla Basin

2. Approximate Proposed Columbia River Water Right Elements

- Instantaneous withdrawal of up to 120 cubic feet per second (cfs)
- Annual volume of 35,000 acre-feet (ac-ft)
- Purpose of Irrigation (continuous supply)
- Point of Diversion near Wallula Junction (below Walla Walla River mouth)

Exchange and Mitigation Considerations

Existing Water RightsExchange Considerations

1. Further Columbia/Walla Walla River Impact Analysis

- Refined seepage analysis part of the USGS Groundwater Study
- BOR Basin Study to refine potential outcomes and assumptions
- Exchange is at the existing water right POD some losses due to seepage and evaporation expected from POD to Columbia River
- Significant uplift in river function and condition in the Walla Walla River

2. Washington State Mitigation Standards

- Supreme Court Case Sara Foster v. Ecology, City of Yelm, WA PCHB (2015)
- Ecology can't waive impacts for typical instream flow rule impacts
- Columbia River rule is different because of consultation requirements
- WAC 173-563-020: "The department will consult with appropriate local, state, and federal agencies and Indian tribes in making this evaluation."

Discussion and Sequencing

- 1. Request for initial feedback within 60 days (October 28th)
- 2. Parallel storage project evaluation on-going
- 3. Informal outreach (ongoing)
- 4. BOR Basin Study Integration and Programmatic Environmental Impact Statement (PEIS) pending
 - a. Scoping and outreach
 - b. Selection of a Preferred Alternative
- 5. File water right application
- 6. Formal consultation on application

Questions and Discussion

