Green/Duwamish River Watershed

Pollutant Loading Assessment: Setup and Development of LSPC Model for Hydrology

Technical Advisory Committee Meeting October 5, 2016

complex world CLEAR SOLUTIONS™

Where we are:

- Previous TAC meeting (4/6/2016) laid out the modeling framework and presented the draft QAPP
- QAPP approved 7/11/2016
- First phase: watershed hydrologic model
 - Configure, calibrate and validate the hydrology portion of the watershed model (LSPC)
 - Produce interim TM on model setup
 - Next step: Adjust, refine, and improve the hydrology model
 - Develop draft watershed hydrology model documentation report for formal review and comment

LSPC Watershed Model

LSPC Hydrology Model

Hydrologic Components:

- Precipitation
- Interception
- Evapotranspiration
- Overland flow
- Infiltration
- Interflow
- Subsurface storage
- Groundwater flow
- Groundwater loss

Overlay of Land Use, Geology, Slope

Model Extent

- Start with existing HSPF models
- Extend to full area draining to LDW
- Create two LSPC models
 - Green River Model area draining to head of EFDC model
 - Duwamish Model (direct downstream drainages)

Upstream Extension to Howard A. Hanson Dam Spillway

Bear Creek enters below Dam and above the Tacoma Diversion

Downstream Extension: Seattle Area

- Take to boundary of LDW and Elliott Bay
- Substantial alterations to natural watersheds
- Includes combined, partially separated, and fully separated SW drainages

Delineating Seattle Area

- Use SPU drainage basins, sewer lines and SWMM models
- Include combined sewer areas, as they may contribute groundwater flow to LDW
- Surface runoff in combined area only contributes to LDW during CSO events

Linked Models

Notes: Not to scale. River Mile zero is defined at the southern tip of Harbor Island

Upland Representation

- Define Hydrologic Response Units (HRUs) consistent with existing HSPF models based on intersection of:
 - Land Use/Land Cover
 - Effective Impervious Area
 - Soil type
 - Slope characteristics
- Add additional characteristics to represent drainage type
 - Separate storm sewers
 - Combined sewers
 - Partially separated areas

Soil Classes

Slope Classes

King Co. 10m DEM developed from LiDAR

Base Land Use

- 2006 NLCD satellite coverage
- Wetlands area redefined based on King Co. wetlands
- Explicitly simulated lakes and streams are represented as reaches and removed from upland coverage

Impervious Area

- New high resolution LiDAR coverages include height
- Distinguish roof, road, and other ground-level impervious areas
- Analyze for "effective" impervious fraction that connects to drainageways

Effective Impervious Area (EIA) Fraction

► Use Elmer (2001) for densely developed areas: EIA = 1.0428 TIA - 11.28%

- Not applicable below TIA of 10.82%; should not go to zero – apply Sutherland (1995) equations
- May need to adjust for SW BMP extent that changes EIA in specific drainage areas

Drainage Classes from SPU

- Stormwater from combined sewers enters LDW only during CSO events
- Note areas outside Seattle contribute sanitary sewage to CSOs but storm drainage is separated

Reach Network

- Upland land units are connected to reaches (streams, lakes)
- Each subbasin has an accompanying reach
- Characteristics of these reaches control movement of water and pollutants to the LDW

Flow through reaches

- Each stream reach or conveyance is represented in the model as a 1-D, fully mixed segment
- Additional information is used to represent hydraulic response and details of bed – water column interactions

Reach Geometry and Hydraulics

Key for sediment transport

 Determines storm hydrograph shape and associated energy to erode and move channel sediment

Data sources

- HEC-RAS flood elevation models
- SWMM stormwater models
 - Received from SPU
 - Still seeking availability of additional city stormwater conveyance models
- Stream gage rating curves
- Regional hydraulic geometry equations
- Process fine-scale model output to define volumedischarge-depth-area relationships for LSPC reaches

HEC-RAS Models

Hydraulics – Other Methods

- Where detailed hydraulic models are lacking can resort to other methods
- Cross-section available: solve Manning's equation
- Pipe/culvert dimensions available: solve pipe flow equations
- Gage rating curves: Combine with cross-section information to directly generate relevant table
- Regional hydraulic geometry (Castro and Jackson, 2001):
 - Predict X-section area, bankfull width, depth from flow
 - Solve Manning's equation

Weather Data - Precipitation

- Existing HSPF models used precipitation data from available stations, with multiple processing steps to combine information from various time periods and adjust for PRISM average annual precipitation
- Method not easily replicated for other time periods and introduces inaccuracies

For the new model, use newly available daily PRISM

- Automated distribution of station-based data using climateelevation regression function at ~4 km resolution
- Disaggregate sub-daily patterns using NLDAS-2 information from Doppler radar and satellite data
- NLDAS-2 also provides a full suite of other weather variables at 1/8 degree resolution

Mean Annual Precipitation from PRISM, 1996-2015

Range from 39 to 107 in/yr

Substantial Changes in Poorly Gauged Areas

Potential Evapotranspiration (PEVT)

- Largest outgoing component of water balance
- HSPF used WSU Puyallup data (outside watershed)
 - Does not reflect spatial variability
 - Input as constant daily rate, not capturing diel patterns
 - Not matched to local rainfall pattern
- We recalculate Penman-Monteith energy balance reference PEVT (FAO 56) using variables available in NLDAS gridded coverage

PEVT Calculated from NLDAS

Centered near Puyallup average (~35.7 in/yr), but has distinct spatial variability

Boundary Conditions

- Upstream boundary: Gaged releases from Howard A. Hanson Dam
- Other minor boundaries follow HSPF methods
 - Lake Youngs piped outflow to Little Soos Creek
 - Groundwater routing from closed depressions (Deep Creek, Coal Creek, Horseshoe Lake) and Green River Natural Resource Area
 - External groundwater inflows and routing between subbasins as developed for Black River, Crisp Creek, and Soos Creek HSPF models

Water Appropriations

Green/Duwamish River Watershed

Pollutant Loading Assessment: Current Status of LSPC Model for Hydrology

Technical Advisory Committee Meeting October 5, 2016

complex world CLEAR SOLUTIONS"

Flow Gaging

- 17 gages with 2+ years data in 1997-2015 period (excluding headwater boundary)
- Also use 32c on Olson Creek, although a bit less than 2 years available

Uncalibrated Hydrology (first look)

- Use existing parameters imported from HSPF models
- Significant changes to model weather data, land use, and simulation period
- Unadjusted fit is already good at some stations; others will require calibration adjustments (e.g., Little Soos Creek, Mill Creek)
- Potential sources of discrepancies
 - Parameter values that compensated for uncertainty in weather data
 - Representation of stormwater BMPs and EIA (local SWMM models may help)
 - Uncertainty in representation of groundwater transfers
 - Uncertainty in gage rating curves

Overall System Flow is Good

Green River nr Auburn (USGS 12113000) has percent volume error of -7%, Daily Nash-Sutcliffe coefficient of model fit efficiency of 0.958.

Date

Percent of Time that Flow is Equaled or Exceeded

Additional work is needed elsewhere...

Mill Creek at Peasley Canyon Rd (King Co. 41c) has percent volume error of +38%, Daily Nash-Sutcliffe coefficient of model fit efficiency of 0.460.

Data Gaps for Hydrology

Stream profiles, cross-sections, and conveyance models

- Improve hydraulic and sediment scour representation
- Currently pursuing local stormwater models from MS4 cities
- Other studies for unincorporated areas?
- Incorporating stormwater BMPs
 - Have significant SW BMPs been included in HSPF, what can be added?
 - HSPF approach was to adjust EIA as calibration step
 - We hope to avoid this through use of more detailed impervious area and stormwater BMP information
 - Municipal stormwater conveyance (SWMM) models should help clarify

Data Gaps for Hydrology (Continued)

- Some outstanding requests for well withdrawal records from utilities
- Need detailed information on rating curve development, adjustment, and reliability for King Co. stream gages
 - Potential refinement of volume-discharge relationships
 - Interpretation of discrepancies in fit
- Need to think about benefit vs. cost of pursuing details: Where will it matter for toxics simulation?
 - Low flow less important than high flow
 - Sediment transport processes in areas of contaminated stream sediments are of high interest
 - Runoff (and runoff controls) from concentrated source areas are of greatest importance to PLA

Summary of Data Requests from TAC

- 1. MS4s provide detailed stormwater conveyance models where available
 - Tt use to improve hydraulic tables
 - Tt consult with MS4s on extent of additional reductions in EIA associated with BMP installations
- 2. King Co.: provide information gage rating curve calibration
- 3. Water utilities: requested additional information on well withdrawals that are included in the HSPF models

Next Steps

Finish watershed hydrology model

- Additional data requests and TAC input
- Initial calibration refinements and reporting
 - Review model status with Project Team
 - Adjustments to model based on comments/review
- Final calibration adjustments
- Model documentation report for review
- Response to comments and final model report for hydrology

Questions and Discussion