# **Green/Duwamish River Watershed**



# **Pollutant Loading Assessment**

#### Technical Advisory Committee Meeting April 6, 2016







complex world CLEAR SOLUTIONS™

# **Model selection**



## **EFDC Receiving Water Model**

EFDC model will provide a dynamic representation of:

- hydrodynamic conditions, sediment transport, and toxic pollutant concentrations/loads in the tidally influenced portions of the Green/Duwamish River and LDW
- Building on the previous work
- Extend to simulate movement and storage of all project pollutants in both bed sediments and water column
- QAPP provides detailed approach for configuration and calibration of EFDC model for PLA.

#### Planned Refinements/Additions to Previous EFDC Models

- Utilize the original grid with extension upstream to free flowing river;
- Update hydrodynamic model including flow, velocity, water surface elevation, salinity and temperature;
- Update sediment transport model;
- Re-calibrate hydro and sediment transport models (if needed)
- Add total organic carbon and dissolved organic carbon to support toxics modeling;

### Planned Refinements/Additions to Previous EFDC Models (cont.)

- Fate and transport modeling using 2phase partitioning
  - Freely dissolved and sorbed phase
- Inclusion of contaminant transport and transformation processes
- Special emphasis on water column concentrations and the exchange between water column and bed sediments.



PCBs cPAHs Arsenic Copper Zinc Phthalates

#### **Contaminants in bed sediments**

- Black carbon mediates organic contaminant transport
- Model does not simulate black carbon
- EFDC development will use black carbon concentrations, empirically, to adjust effective partition coefficients and resulting porewater concentrations
- Will rely on black carbon analysis by USACE (Gschwend et al., 2015)

# **EFDC Model Configuration**

- Model Grid and Input File Development
- Boundary Conditions
- Initial Conditions





#### **Model Grid and Input File Development**

- Model grid will be curvilinear-orthogonal
- Current model domain will be extended to RM17
  - EFDC will cover area of tidal influence
- Grid resolution (width x length) will remain similar
- Model layers
  - 10 water layers
  - 5 sediment layers
  - Might be adjusted during calibration
- Will evaluate utilizing multiple bathymetric datasets
  - Account for dredging activities

# **Dredging Activities**

- Model input files utilize only 1 bathymetric dataset
- Calibrate model for smaller time period
- Change bathymetric dataset
  - Representative of different time period
  - Compare simulated results to measured data
  - Potentially adjust model parameters
- During model configuration, will determine # time periods to represent



# **Boundary Conditions**

- Upstream Boundary
  - USGS station 12113000
  - LSPC simulated flows and concentrations
- Lateral Boundaries
  - LSPC simulated flows and concentrations
  - Existing monitoring/modeling of CSOs
- Downstream Open Boundary
  - Tidal Predictions from NOAA Stations
    - Duwamish Waterway, Eighth Ave. South (Id. 9447029)
    - Seattle, WA (Id. 9447130)
  - Elliott Bay data (quality)
- Atmospheric Deposition
  - Existing studies

## **Initial Conditions**

Required for conventional pollutants, sediment and toxics

- Water Column Layers
- Bed Sediment Layers
- Water Column
  - Highly variable
  - Model "spin-up" period of a few months to a few years
- Bed Sediment
  - Will rely heavily on monitoring data
  - Model "spin-up" period of several years

## **EFDC Linkage to Other Models**

- Outputs from LSPC
  - Flow
  - Sediment
  - Containment load (dissolved and sediment-sorbed)
- Outputs from CSO models
- Facilitate with scripting (e.g., Python)

# **EFDC Model Calibration**

- Time Period and Approach
- Hydrodynamic Calibration and Evaluation
- Sediment Transport Calibration and Evaluation
- Water Quality Calibration and Evaluation



# **Time Period and Approach**

- Calibration sequencing
  - Hydrodynamics
  - Sediment Transport
  - Water Quality
- Time Period
  - Initial focus on 1996-2007
  - Small time periods based on bathymetric data
  - Additional calibration and model testing beyond 2007 to take into account more recent data will also be conducted

# **Hydrodynamic Calibration and Evaluation**

#### EFDC hydrodynamics will be calibrated for:

- Water surface elevation
- River velocities
- Salinity
- Temperature
- Calibration will be based on:
  - Graphical assessment
    - Various time periods
    - Trends
  - Statistical tests for goodness-of-fit



## **Hydrodynamic Calibration and Evaluation**

#### EFDC will be evaluated to reproduce

- Water surface elevations
- Flow distribution
- Flow and current speed dynamics at different locations within the estuary
- Temporal variations of salinity at different locations
- Vertical salinity structure at different locations
- Temporal variations of temperature
- Vertical temperature structure at different locations



# Previous Modeling (QEA, 2008)



#### **Tide Calibration Example**



#### **Velocity Calibration Examples**



Figure C-8a. Comparison of predicted and observed current velocity at Sea Boil Worlduring 10-hr period on August 28, 1996.

DN/CO - E:\RETIdw\Analysis\Calib\_uv\profiles\_animate\_070516.pro Tue Jun 12 09:45:37 2007



Figure C-13g. Comparison of predicted and observed current velocity at Sea Boil Works station (RM 2.35) during 20-hr period on October 27, 1996.

DN/CO - E:\RETIdw\Analysis\Calib\_uv\profiles\_animate\_070516.pro Tue Jun 12.09:59:18 2007

#### **Salinity Calibration Example**



Figure C-14h. Comparison of predicted and observed salinity at 16th Avenue Bridge (RM 3.35) during 13-hr period on October 25-26, 1996.

DN/CO - E:\RETIdw\Analysis\Calib\_Salinity\profiles\_animate\_070516.pro Tue Jun 12 10:23:51 2007

### **Hydrodynamic Calibration and Evaluation**

#### Statistical tests

- Coefficient of Determination (R<sup>2</sup>)
- Mean Absolute Error (MAE)
- Root Mean Squared Error (RMSE)
- Normalized Root Mean Squared Error (NRMSE)
- Index of Agreement (IA)

### **Sediment Calibration and Evaluation**

- Sediment Transport will be calibrated for:
  - Suspended sediment concentrations
  - Net flux of suspended sediment
  - Bed morphology changes at select locations

#### **Sediment Calibration and Evaluation**

Calibration parameters include:

- River, watershed, internal and point source suspended sediment loads and their distribution into modeled classes (sand, silt, clay)
- Effective particle diameters and/or settling velocities
- Erosion parameters
  - Critical stress and mass erosion rates for cohesive sediment
- Calibration will focus on graphical comparisons
  - If enough suspended sediment data are available, then a goodness-of-fit statistics analysis will be performed

#### **Example calibration - net sedimentation rate**



FC: \/GIS\_station/d\_dr/wo/Private/RETidw/GIS\_plot/Fg\_2-12\_NSR\_CORE\_DATA.mxd

#### **Example calibration - net sedimentation rate**



Figure 2-14. Comparison of predicted and empirically-derived estimates of net sedimentation rates in the navigation channel for 21-year calibration period.

#### **Additional Examples**



Predicted

Sedflume core data



#### Water Quality Calibration and Evaluation

- Calibration approach similar to hydrodynamics:
  - Graphical and Statistical Comparisons
  - Statistics
    - R2, MAE, RMSE, NRMSE and IA
    - Computed mean, median, 5<sup>th</sup> and 95<sup>th</sup> percentiles
    - If measured data is less than 3 data values, average value of data compared to average simulated value
- Calibration conducted in Two-Stage approach
  - Visual Comparison
    - Reproducing trend and overall dynamics of system
  - Fine tuning the parameters and then calculating statistics

# **Questions and Discussion**