AFFF COLLECTION AND DISPOSAL COMMENT SUMMARY

WA DEPARTMENT OF ECOLOGY STATE ENVIRONMENTAL POLICY ACT
Table of Contents

Introduction ... 2
EIS Process ... 2
Scoping Process and Purpose .. 2
Proposed Project ... 3
Background .. 3
Scoping Process ... 3
Scoping Notification ... 3
Summary of Scoping Comments .. 5
Process and Procedures ... 5
Uncertainties ... 6
Concerns ... 6
Elements of the Environment and Ecosystems ... 6
Elements of Health and Environmental Justice .. 7
Project Alternatives ... 7
Interim Storage ... 7
Emerging Technologies .. 8
Questions for Ecology .. 8
Recommended Next Steps ... 8
Next Steps .. 10
Attachments .. 11
Published legal notices .. 11
Website ... 11
Public Notification ... 11
Scoping Comments ... 12
Introduction

In January 2021, the Washington Department of Ecology (Ecology) solicited public comment from public agencies, Tribes, members of the public, and other interested parties on the scope of the State Environmental Policy Act (SEPA) Environmental Impact Statement (EIS) for the proposed storage and disposal of Washington fire department owned aqueous film forming foam (AFFF) containing per- and polyfluoroalkyl substances (PFAS). The public comment period was initiated after Ecology withdrew its determination of non-significance (DNS) for a proposal to collect and send fire department PFAS containing AFFF to the Clean Harbors’ Resource Conservation and Recovery Act (RCRA) permitted incinerator in Aragonite, Utah.

After reviewing comments received during the comment period on the DNS, Ecology decided to withdraw the DNS in order to further analyze potential impacts of the project on the environment and nearby communities. Ecology also wanted to more thoroughly evaluate mitigation opportunities, and potential alternatives through preparation of an Environmental Impact Statement (EIS) consistent with the requirements of the Washington State Environmental Policy Act (SEPA). As a result, Ecology issued a Determination of Significance (DS) on January 19, 2021 and requested comments on the scope of the SEPA EIS.

This report summarizes the comments received Ecology during the EIS scoping period. This document does not provide a response to these comments. The purpose of the scoping summary document is to gather public input on what issues and alternatives should be considered and evaluated in the EIS. The scoping process helps focus the alternatives and scope of analysis in the EIS and contributes to clarifying the significant issues that are analyzed in depth in the EIS. Scoping comments received by Ecology described concerns with the incineration process and procedures, impacts to the environment and human health, potential alternative disposal methods, questions for ECOLOGY, and recommended next steps.

EIS PROCESS

ECOLOGY determined that its proposal for incineration could have possible significant adverse impact(s) on the environment. As a result, an EIS is required under RCW 43.21C.030 (2)(c) and will be prepared after the scoping process. Elements of the environment that may be included in this analysis are listed in the SEPA rules (WAC 197-11-444).

The EIS will consider the environmental impacts, alternatives, and mitigation of the collection, transport, and disposal of PFAS-containing AFFF by ECOLOGY while utilizing a state-contracted Resource Conservation and Recovery Act (RCRA) qualified hazardous waste hauler to collect, transport, and dispose of the foam.

Ecology anticipates that the draft EIS will be available for public review and comment in Fall 2022.

SCOPING PROCESS AND PURPOSE

Per WAC 197-11-408, the scoping process is used to narrow the scope of an EIS to the probable significant adverse impacts of the alternatives and proposed mitigation measures, and to ensure that the EIS is concise. The lead agency is instructed to prepare the draft EIS (DEIS) in accordance with the scope determined through this scoping process and to eliminate the analysis of those impacts that are not significant. This scoping summary is not required by the regulations, but Ecology has elected to produce this report to assist stakeholders and the public in engaging and following the EIS process.
Proposed Project

BACKGROUND

In 2018, the Washington Legislature passed legislation prohibiting the manufacture and sale of PFAS-containing AFFF starting in July 2020. The Legislature also prohibited the use of PFAS AFFF for training exercises. Many fire departments asked Ecology how to safely dispose of their unused AFFF. To address this need, the Legislature also authorized Ecology to collect, transport, and dispose of PFAS-containing AFFF at the state’s municipal fire departments.

Fire departments across the state manage thousands of gallons of AFFF. AFFF is used on liquid fuel or petroleum-based fires and is suspected of contaminating ground and drinking water around the state. In 2020, ECOLOGY conducted outreach to municipal fire departments, identifying 70 plus departments with approximately 30,000 gallons of AFFF that qualify for disposal. After initial research, Ecology determined that the preferred method of disposal would be incineration. As of 2022, the number has increased to be 90 fire departments with onsite AFFF that qualify for disposal.

In September of 2020, ECOLOGY completed an environmental review of the project and released a SEPA checklist and a determination of non-significance (DNS) for public comment. This review assumed that the collected foam would be sent for incineration to the Clean Harbors’ Resource Conservation and Recovery Act (RCRA) permitted incinerator in Aragonite, Utah. Ecology closed a 30-day comment period on October 1, 2020. After reviewing public comments, ECOLOGY decided to withdraw the DNS to do additional analysis of the project’s environmental impacts, potential alternatives, and mitigation.

Ecology determined that the proposed project could have potential significant adverse impact(s) on the environment and that an EIS was required under RCW 43.21C.030 (2)(c). The EIS will consider the environmental impacts of identified alternatives, including the collection, transport, and disposal of PFAS-containing AFFF by a RCRA-qualified hazard waste hauler. Elements of the environment that may be included in this analysis are listed in the SEPA rules (WAC 197-11-444).

SCOPING PROCESS

On January 19, 2021, Ecology invited agencies, affected tribes, members of the public, and all interested parties to comment on the scope of the EIS. The comment period was open for 30 days.

Entities submitted comments online via the online comment form, via email to Sean Smith, or via direct mail.

SCOPING NOTIFICATION

Ecology notified agencies, affected tribes, members of the public, and all interested parties of the request for comments via email listserv and via its EZView website.

Requests for comments were made through the SEPA register, the agency’s email list which included the participating fire departments, SEPA contacts at local and county governments, other state government entities, and tribal governments. The outreach also included interested parties with non-governmental entities, academic institutions, federal agencies, private industry, and the general public. Additional outreach on requests for
comments on the DS were conducted on the agency’s website, blog, public presentations, and through the online comment web portal.
Summary of Scoping Comments

In total, there were five comments received on the scope of the Environmental Impact Statement (EIS). All comments were supportive or neutral regarding Ecology decision to withdraw its DNS. The majority of comments were short letters with specific suggestions or questions. One comment from the Sierra Club and Earthjustice described in detail the uncertainties with regards to PFAS incineration as well as the known environmental and health impacts of exposure to PFAS. Most of the comments summarized below come from the letter from the Sierra Club and Earthjustice. See Table 1: Summary of Comments Received for more detail on the specific comments.

Comments were coded into the following categories:

- **Process and procedures**: Comments about the uncertainties of the PFAS incineration process that may lead to known environmental and health impacts.
- **Elements of the environment and ecosystems**: Comments about the known impacts to ground and surface water, air pollution, and endangered species.
- **Elements of health and environmental justice**: Comments about the known health impacts, particularly to overburdened communities.
- **Project alternatives**: Comments recommending that ECOLOGY continue to pursue alternatives such as interim storage and emerging technologies.
- **Questions for ECOLOGY**: Specific questions from stakeholders on how to dispose of their AFFF supply.
- **Recommended next steps**: Comments suggesting continued action by ECOLOGY and others.

Table 1: Summary of Comments Received

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Type of Comment</th>
<th>Length of Comment</th>
<th>Support or Opposition?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy Kyle</td>
<td>No date</td>
<td>Letter</td>
<td>½ page</td>
<td>Support</td>
</tr>
<tr>
<td>Dawn Judkins, Mountain View Fire and Rescue</td>
<td>No date</td>
<td>Letter</td>
<td>¼ page</td>
<td>Neutral</td>
</tr>
<tr>
<td>Norm Payton, WA Department of Transportation</td>
<td>No date</td>
<td>Letter</td>
<td>¼ page</td>
<td>Neutral</td>
</tr>
<tr>
<td>Mike Maier, Pasco Fire Department</td>
<td>No date</td>
<td>Letter</td>
<td>½ page</td>
<td>Support</td>
</tr>
<tr>
<td>Sierra Club & Earthjustice</td>
<td>2/18/2021</td>
<td>Letter</td>
<td>21 pages</td>
<td>Support</td>
</tr>
</tbody>
</table>

PROCESS AND PROCEDURES

Commenters noted that there are several uncertainties with regards to incinerating PFAS including whether existing technology is able to destroy PFAS. The qualities that make PFAS so widely used make it difficult to destroy.

“Because of the strength of their carbon-fluorine chemical bond, PFAS are very difficult to destroy, and unsafe disposal methods such as incineration threaten to generate additional PFAS and other toxic combustion byproducts” (Sierra Club 2021).
Uncertainties

There are a range of uncertainties with regards to PFAS incineration including:

Lack of measurement methods to determine whether PFAS and other chemicals have been destroyed through the disposal process.

“In order to measure the impacts of PFAS incineration, Ecology must determine the full range of chemicals generated and released during the incineration process. This analysis may depend on EPA’s continued development and approval of “methods for sampling and analyzing PFAS in air emissions and ambient air to enable monitoring of the environment and testing effectiveness of PFAS control technologies.”19 To the extent that quantification of health effects is not possible using existing methodologies, Ecology must “make clear that such information is lacking or that substantial uncertainty exists” (Sierra Club 2021).

Lack of understanding of effectiveness of incineration and combustion byproducts. For example, there are concerns as to whether incineration facilities are able to heat the chemical to the proper temperature to ensure its safe destruction and disposal.

“If PFAS incineration does not completely destroy the carbon-fluorine bond, it can result in the formation and release of additional PFAS, which themselves can result in a range of serious health effects” (Sierra Club 2021).

“PFAS incineration is a dangerous practice that threatens to exacerbate and spread PFAS contamination. There is no evidence that PFAS can be safely incinerated in any commercial incinerator, and EPA has not approved the test methods needed to evaluate the full range PFAS emissions from the incineration process” (Sierra Club 2021).

Concerns

Additionally, commenters raised concerns that that the proposed incineration facility, the Clean Harbors Aragonite facility in Utah, may not be able to heat the chemical to the proper temperature. Commenters also noted that the facility has several violations of permits.

“The temperature and holding times that Ecology will mandate for incineration of PFAS wastes are at the outer edge of operating conditions for the Aragonite incinerator” (Sierra Club 2021).

“Aragonite was cited for mishandling of harmful compounds like mercury and PCBs, and violations related to bypassing the emissions control equipment” (Sierra Club 2021).

ELEMENTS OF THE ENVIRONMENT AND ECOSYSTEMS

Commenters raised concerns about the environmental and ecosystem impacts of PFAS and its incineration byproducts. Many of the comments cited that PFAS impacts a variety of ecosystem components.

“Fluorinated acetic acids -mono-, di-, and tri-fluoroacetic acids are common thermal breakdown products of PTFE, particularly at lower heats. They are toxic to aquatic ecosystems and widely detected in the atmosphere and in precipitation” (Sierra Club 2021).
“AFFF incineration ‘can produce air emissions’ which ‘deposit upon the land and surface water.’ ‘The deposition can then be taken up by biota including humans, potentially negatively impacting their growth and development’” (Sierra Club 2021).

Commenters cited several specific elements of the environment that are impacted by PFAS incineration including impacts to ground and surface water, air pollution, greenhouse gases, and endangered species.

Impacts to Ground and Surface Water: “PFAS have contaminated drinking water, air, and soil across the country, including in several communities in Washington State” (Sierra Club 2021).

Air Pollution: “PFAS are very difficult to destroy, and unsafe disposal methods such as incineration threaten to generate additional PFAS and other toxic combustion byproducts” (Sierra Club 2021).

Endangered Species: “PFAS exposures threaten endangered species and other ecological resources. It is critical that Ecology evaluate these impacts as well, particularly given the existence of more than 40 threatened or endangered species—and more than 160 “sensitive species” that ‘warrant special attention and management to keep them from becoming listed in the future’—in Utah, where Ecology had initially proposed shipping its PFAS” (Sierra Club 2021).

Greenhouse gas emissions from byproducts: “The global warming potential of fluorine-containing byproducts is thousands of times more potent than carbon dioxide” (Sierra Club 2021).

ELEMENTS OF HEALTH AND ENVIRONMENTAL JUSTICE

Commenters cited that if not properly treated, incineration can create and release additional PFAS which cause and amplify a range of health impacts for communities including the Skull Valley Goshute Reservation which is adjacent to the Utah incineration facility.

Nationwide, “higher exposures [to PFAS] are more likely to occur in communities of color and low-income communities.” A September 2017 report issued by the Department of Ecology described data showing that tribal fish consumption levels of resident fish, especially in Western Washington, exceed Washington Department of Health safe consumption limits (Department of Ecology 2017).

Commenters recommended that the EIS “should evaluate the impacts of its PFAS disposal options on communities of color, tribal populations, and other disproportionately burdened communities” (Sierra Club 2021).

PROJECT ALTERNATIVES

Commenters suggested that Ecology should consider and analyze a range of project alternatives including interim storage and emerging technologies before selecting a preferred alternative.

Interim Storage

Commenters suggested that interim storage is an important intermediary step that Ecology should maintain while investigating the uncertainties of incineration and studying alternative disposal methods.

“In its EIS, Ecology should consider off-site storage at a permitted hazardous waste storage facility as a temporary disposal option. EPA is currently pursuing a series of short-term (1–2 years) and long-term (3+ years) research and development initiatives related to PFAS disposal, which are intended to enable decision-makers ‘to
make informed decisions about the tradeoffs between different risk management solutions, leading to better environmental outcomes.’ Interim storage would enable Ecology to consider the results of this pending research and to make a more informed choice among disposal options” (Sierra Club 2021). Commenters noted the risk of release or spillage of PFAS if the interim storage program is not continued.

“In considering interim storage, Ecology should also consider the risks that are posed by leaving AFFF on site at fire stations and other locations across the state, as well as measures that could be taken to mitigate those risks by consolidating storage in a central repository or by taking other steps to prevent the use and release of AFFF” (Sierra Club 2021).

Emerging Technologies

Several comments cited emerging technologies and recommended that Ecology continue to pursue these technologies to dispose of PFAS more safely.

These technologies include “electrochemical oxidation, mechanochemical degradation, pyrolysis and gasification, and supercritical water oxidation” (Sierra Club 2021).

“Alternative disposal technologies with contained systems would also allow operators to measure the success of destruction before releasing wastes into the environment, a fundamental improvement compared to incineration, where periods of non-compliance can spew harmful materials into impacted communities and the environment” (Sierra Club 2021).

QUESTIONS FOR ECOLOGY

Two commenters requested specific assistance from Ecology on how to safely dispose of their existing PFAS supply.

WSDOT requested assistance on how to dispose of 20,525 gallons of PFAS containing AFFF that’s located in the Mt. Baker, Mercer Island, and Montlake Tunnels (Payton 2021).

“Mountain View Fire and Rescue in Auburn, Washington is looking to safely dispose of or transfer the current unused volume of foam we have onsite to an agency who can safely dispose of the foam. The storage of this foam has become a burden for our fire agency to store the unusable foam. We are looking for assistance with a remedy to surplus/dispose of the foam” (Judkins 2021).

RECOMMENDED NEXT STEPS

Commenters had several suggestions for next steps including urging Ecology to continue to advance legislative solutions to address and mitigate the risks of PFAS, including prohibiting the manufacture and distribution of AFFF and advancing alternative disposal methods. In addition, commenters encouraged Ecology to continue researching the impacts of PFAS exposure on human health and the impact of the chemical’s incineration on the environment through expanding coordination with other agencies such as the EPA:

- The U.S. Environmental Protection Agency (“EPA”) recently acknowledged that the effects of PFAS incineration are “not well understood” and that “[a]dditional research is needed to minimize or eliminate data gaps or current uncertainties” (Sierra Club 2021).
“Ecology should conduct expanded scoping for the proposed project and should consult with EPA concerning the impacts of PFAS incineration and other methods of PFAS disposal” (Sierra Club 2021).

“Ecology should make use of EPA’s research and expertise by involving EPA in an expanded scoping process and working with EPA to determine key data and uncertainties related to PFAS incineration” (Sierra Club 2021).

Continue outreach and education while centering equity in project planning to understand impacts on overburdened communities.

“Having a way to explicitly assess how different alternatives may affect different groups and areas, and particularly how they may affect communities of color and Tribal communities and resources, could contribute to a successful and meaningful assessment” (Kyle 2021).

Reduce impacts through source control and treatment.

“The EIS process might be an opportunity to consider whether more emphasis on collecting PFAS materials to avoid contamination of water sources might be more feasible for some situations and deserve more attention. I would also suggest that cost estimates for drinking water treatment in the draft Action Plan are probably understated” (Kyle 2021).
Next Steps

The next step in Ecology’s environmental review process is to begin work on the Draft EIS. This will include gathering data, conducting studies, and analyzing information. Scoping comments will be considered in refining the EIS scope and alternatives, and while developing the environmental analysis. Once a Draft EIS is published, tribes, agencies, members of the public, and stakeholders will be invited to review and comment on the document and participate in public hearings. Ecology expects to release the DEIS for public comment the fall of 2022.

The Ecology project-specific website (https://www.ezview.wa.gov/site/alias__1962/37693/pfas_in_firefighting_foam.aspx) will be maintained and updated through the environmental review process. Interested parties can receive updates in the following ways: By email, by sending a request to Sean Smith at Sean.Smith@Ecology.wa.gov, 425-324-0328, or Department of Ecology, Northwest Regional Office, PO Box 330316, Shoreline, WA 98133-9716.
Attachments

PUBLISHED LEGAL NOTICES

WEBSITE

All information is available on the project website:

PUBLIC NOTIFICATION

Ecology posted two requests for comments on Ecology’s AFFF collection, transport, and disposal plan in the SEPA register. The first request for comments on the Determination of Non-Significance (DNS) was posted on September 1, 2020. After receiving public comment, the DNS was withdrawn on January 15, 2021. A Determination of Significance was issued on January 19, 2022, seeking scoping comments on the environmental and health impacts of an AFFF collection, transport, and disposal program.

Requests for comments were made through the SEPA register, the agency’s email list which included the participating fire departments, SEPA contacts at local and county governments, other state government entities, and tribal governments. The outreach also included interested parties with non-governmental entities, academic institutions, federal agencies, private industry, and the general public. Additional outreach on requests for comments on the DS were conducted on the agency’s website, blog, public presentations, and the online comment web portal.
State Environmental Policy Act (SEPA)
DETERMINATION OF SIGNIFICANCE AND
REQUEST FOR COMMENTS ON SCOPE OF ENVIRONMENTAL IMPACT STATEMENT

Issue date: January 19, 2021

Lead agency: Washington State Department of Ecology

SEPA responsible official:
Raman Iyer
Section Manager
Hazardous Waste and Toxics Reduction Program
Washington State Department of Ecology, Northwest Regional Office
raman.iyer@ecy.wa.gov

Description of proposal:
In 2018, the Washington Legislature passed legislation prohibiting the manufacture and sale of PFAS-containing firefighting foam starting July 2020. The Legislature also prohibited the use of PFAS foam for training exercises. Many fire departments asked the Department of Ecology (Ecology) how to safely dispose of their unused foam. To address this need, the Legislature also authorized Ecology to collect, transport, and dispose of PFAS-containing firefighting foam at the state’s municipal fire departments.

Fire departments across the state manage thousands of gallons of PFAS foam. PFAS foam is used on liquid fuel or petroleum-based fires and is suspected of contaminating ground and drinking water around the state. In 2020, Ecology completed outreach to municipal fire departments, identifying 70 plus departments with approximately 30,000 gallons of foam that qualify for disposal. After much research, Ecology determined that the preferred method of disposal was incineration.

In September of 2020, Ecology released a SEPA checklist with a determination of non-significance (DNS) proposing that the collected foam be sent for incineration to the Clean Harbors’ Resource Conservation and Recovery Act (RCRA) permitted incinerator in Aragonite, Utah. Ecology closed a 30-day comment period on the DNS and SEPA checklist on October 1, 2020. After considering public feedback, Ecology withdrew the DNS on January 15, 2021 in order to more fully analyze project alternatives, impacts, and potential mitigation.
Find more information on Ecology’s website:

Proponent: Washington State Department of Ecology

Location of Proposal: Statewide

Environmental Impact Statement (EIS) required:

The Department of Ecology determined that this proposal may have probable significant adverse impact(s) on the environment. An EIS is required under RCW 43.21C.030 (2)(c) and will be prepared after the scoping process. Elements of the environment that may be included in this analysis are listed in the SEPA rules (WAC 197-11-444).

The EIS will consider the environmental impacts, alternatives, and mitigation of the collection, transport, and disposal of PFAS-containing firefighting foam. The state will use a RCRA qualified hazard waste hauler to collect, transport, and dispose of the foam.

Applicant contact:
Sean Smith, sean.smith@ecy.wa.gov or (425) 649-4495
Hazardous Waste and Toxics Reduction Program
Department of Ecology

Scoping:
Ecology invites agencies, affected tribes, members of the public, and all interested parties to comment on the scope of the EIS. You may comment on alternatives, mitigation measures, probable significant adverse impacts, and licenses or other approvals that may be required. The comment period will be open for 30 days.

Submit comments via:

- **Online:**
 Using our online comment form: http://hwtr.ecology.commentinput.com/?id=Gudh4

- **Email:**
 Sean Smith (sean.smith@ecy.wa.gov)

- **Mail:**
 AFFF Collection/Disposal Program EIS
 Attn: Sean Smith
 Department of Ecology
 3190 160th Ave SE
 Bellevue, WA 98008

 Ecology will accept comments starting January 19, 2021 through February 18, 2021.

Signature ___________________________ Date ___________________________
January 14, 2021
Earthjustice and the Sierra Club

Please find attached comments from Earthjustice and the Sierra Club.
February 18, 2021

Via Online Submission and Email
Sean Smith
Department of Ecology
3190 - 160th Ave. SE
Bellevue, WA 98008-5452
sean.smith@ecy.wa.gov

Dear Mr. Smith:

Earthjustice and the Sierra Club submit these comments on the scope for the environmental impact statement (“EIS”) for the Department of Ecology’s (“the Department” or “Ecology”) proposed collection and disposal of aqueous film forming foam (“AFFF”) containing per- and polyfluoroalkyl substances (“PFAS”). We appreciate the Department’s decision to prepare an EIS on its proposed AFFF disposal plan, which has potentially significant impacts on human health and the environment.

PFAS are a highly toxic, persistent, and ubiquitous class of chemicals, found not only in firefighting foam but also in cookware, clothing, food packaging, and a range of other products. PFAS have contaminated drinking water, air, and soil across the country, including in several communities in Washington State. Because of the strength of their carbon-fluorine chemical bond, PFAS are very difficult to destroy, and unsafe disposal methods such as incineration threaten to generate additional PFAS and other toxic combustion byproducts. Ecology is right to be concerned about the potential release of PFAS, not only from the use but also the disposal of AFFF and other PFAS-containing products and wastes.

The U.S. Environmental Protection Agency (“EPA”) recently acknowledged that the effects of PFAS incineration are “not well understood” and that “[a]dditional research is needed to minimize or eliminate data gaps or current uncertainties.”1 Yet, to the best of our knowledge, no federal or state agency has ever previously prepared an EIS before authorizing the incineration of AFFF.

Ecology’s EIS presents an opportunity for a much needed analysis of the impacts of PFAS disposal. We appreciate this opportunity to comment on the scope of the EIS, and we urge Ecology to use its State Environmental Policy Act (“SEPA”) analysis to determine and select the most health-protective means of AFFF disposal, including the use of interim storage until adequate studies of different disposal methods have been conducted.

I. Ecology Should Broadly Define the Proposed Action as the Safe Storage or Disposal of AFFF

Ecology’s Determination of Significance and Request for Comments states that “[t]he EIS will consider the environmental impacts, alternatives, and mitigation of the collection, transport, and disposal of PFAS-containing firefighting foam.”2 We believe that is an appropriate scope for the EIS. Ecology should consider the full range of storage and disposal options on equal footing, and should not identify a preferred alternative until after that analysis has been completed.

This is preferable to Ecology’s prior project description, which “determined that the preferred method of disposal was incineration” and relegated all other disposal options to a cursory discussion of alternatives in a SEPA Checklist.3 As described in our comments on Ecology’s since-withdrawn Determination of Non-Significance, PFAS incineration is a dangerous practice that threatens to exacerbate and spread PFAS contamination.4 There is no evidence that PFAS can be safely incinerated in any commercial incinerator, and EPA has not approved the test methods needed to evaluate the full range PFAS emissions from the incineration process.5

Ecology’s SEPA Handbook states that “[a]gencies are encouraged to describe a proposal as an objective,” as opposed to a particular means to an outcome.6 Consistent with that guidance, Ecology should define its proposed action in the EIS as the safe storage or disposal of PFAS-containing firefighting foam. This broader project scope “encourages the consideration of a wider range of alternatives” and is likely to result in a more informed decision.7

II. Ecology Should Conduct Expanded Scoping That Involves the U.S. EPA

Ecology’s SEPA regulations provide that “the lead agency may expand the scoping process” by, among other options, “[i]nviting participation of agencies with jurisdiction or expertise from various levels of government, such as regional or federal agencies.”8 Ecology should conduct expanded scoping for the proposed project, and should consult with EPA concerning the impacts of PFAS incineration and other methods of PFAS disposal.

EPA recently issued Interim Guidance on the Destruction and Disposal of Perfluoroalkyl and Polyfluoroalkyl Substances and Materials Containing Perfluoroalkyl and Polyfluoroalkyl

5 Id. at 1–2.

7 Id.

Substances, a document which “provides information on the current state of the science and the associated uncertainties for current commercially available [PFAS] disposal … technologies.”9 This guidance was mandated by the National Defense Authorization Act for Fiscal Year 2020,10 and it addresses the risks and uncertainties associated with the incineration of AFFF and other PFAS-containing wastes. In the course of preparing that guidance, EPA conducted stakeholder outreach, reviewed the available literature, and identified key data gaps that required additional research and analysis. In particular, EPA called for “continue[d] research activities investigating incineration of PFAS” in order to “determine whether thermal treatment devices and their associated post-combustion control devices are adequately controlling [products of incomplete combustion,] especially fluorinated PICs.”11 Ecology should make use of EPA’s research and expertise by involving EPA in an expanded scoping process and working with EPA to determine key data and uncertainties related to PFAS incineration.

III. Ecology Should Consider Off-Site Storage As an Interim Disposal Option

In recognition of the serious data gaps surrounding PFAS disposal technologies and the need for additional study and analysis, EPA’s PFAS disposal guidance recommends that “interim storage may be an appropriate strategy until identified uncertainties are addressed and appropriate destruction and disposal technologies can be recommended.”12 In particular, “EPA encourages the safe storage of PFAS and PFAS-containing materials as needed, following manufacturers’ recommended best management practices as well as in accordance with any relevant industry, federal, state, or local requirements or guidelines.”13

In its EIS, Ecology should consider off-site storage at a permitted hazardous waste storage facility as a temporary disposal option. EPA is currently pursuing a serious of short-term (1–2 years) and long-term (3+ years) research and development initiatives related to PFAS disposal, which are intended to enable decision-makers “to make informed decisions about the tradeoffs between different risk management solutions, leading to better environmental outcomes.”14 Interim storage would enable Ecology to consider the results of this pending research and to make a more informed choice among disposal options. Moreover, the hazardous waste facility that Ecology had previously proposed for the incineration of its AFFF (Clean Harbors’ Aragonite incineration facility) is also permitted to store PFAS and hazardous waste. In considering interim storage, Ecology should also consider the risks that are posed by leaving AFFF on site at fire stations and other locations across the state, as well as measures that could be taken to mitigate those risks by consolidating storage in a central repository or by taking other steps to prevent the use and release of AFFF.

IV. Ecology Must Consider a Range of Emerging Disposal Technologies

9 PFAS Disposal Guidance, supra note 1, at 1.
11 PFAS Disposal Guidance, supra note 1, at 49.
12 Id. at 3.
13 Id.
14 Id. at 93–97.
EPA and the Department of Defense are investing in the development of advanced destruction technologies that could provide fundamentally safer methods to address PFAS wastes. EPA’s PFAS Innovative Treatment Team is actively exploring four advanced technologies—electrochemical oxidation, mechanochemical degradation, pyrolysis and gasification, and supercritical water oxidation. It currently has published research briefs on each of the issues, and is pursuing research to gauge the success in destroying PFAS. Some of these technologies have been previously used to destroy chemical warfare agents, PCBs, and halogenated chemicals, and other persistent organic pollutants. Alternative disposal technologies with contained systems would also allow operators to measure the success of destruction before releasing wastes into the environment, a fundamental improvement compared to incineration, where periods of non-compliance can spew harmful materials into impacted communities and the environment. In its EIS, we urge Ecology to consider these emerging technologies as an alternative to incineration, and to consider interim storage of AFFF while the development and testing of these alternatives proceeds.

V. Ecology Must Consider the Health Effects From PFAS and Non-PFAS Products of Incomplete Combustion

Under SEPA, the obligation to evaluate “environmental impacts” encompasses “[r]eleases or potential releases to the environment affecting public health, such as toxic or hazardous materials.” PFAS incineration has the potential to generate and release a range of toxic materials. The Department of Defense has found that such incineration is “likely” to produce “environmentally unsatisfactory … or toxic” byproducts, including hydrogen fluoride (a strong respiratory toxin), fluoroacetates (a type of poison used in rodenticides), or perfluoroisobutylene (a chemical warfare agent). In addition, if PFAS incineration does not completely destroy the carbon-fluorine bond, it can result in the formation and release of additional PFAS, which themselves can result in a range of serious health effects. In other to measure the impacts of PFAS incineration, Ecology must determine the full range of chemicals generated and released during the incineration process. This analysis may depend on EPA’s continued development and approval of “methods for sampling and analyzing PFAS in air emissions and ambient air to enable monitoring of the environment and testing effectiveness of PFAS control technologies.” To the extent that quantification of health effects is not possible using existing methodologies, Ecology must “make clear that such information is lacking or that substantial uncertainty exists.” Ecology should also “weigh the need for the action with the severity of possible adverse impacts which would occur if the agency were to decide to proceed

15 EPA, “PFAS Innovative Treatment Team (PITT),” https://www.epa.gov/chemical-research/pfas-innovative-treatment-team-pitt (last visited Feb. 16, 2021); DOD, Briefing to Congress on Best Practices for Cleanup Technologies and Disposal of Soils, Filters, and Aqueous Film Forming Foam Containing Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA), and Required Additional Research (Nov. 1, 2019) (describing “current SERDP/ESTCP Research on Cleanup and Disposal, and PFAS Chemicals”).
16 Id.
19 PFAS Disposal Guidance, supra note 1, at 92.
20 WAC § 197-11-080(2).
in the face of uncertainty, “21 and should consider deferring any final decisions related to PFAS disposal until additional information is available.

VI. Ecology Should Consider and Minimize the Environmental Justice and Tribal Impacts Associated With All Disposal Options

Last September, the Washington State Environmental Justice Task Force recommended that “[e]nvironmental justice considerations should be incorporated into a range of state environmental laws,” including SEPA.22 Consistent with that recommendation, and with Ecology’s “commit[ment] to making decisions that do not place disproportionate burdens on disadvantaged communities” and “to lift the weight of pollution and contamination borne by those communities,” Ecology’s EIS should evaluate the impacts of its PFAS disposal options on communities of color, tribal populations, and other disproportionately burdened communities.23

Nationwide, “higher exposures [to PFAS] are more likely to occur in communities of color and low-income communities.”24 A September 2017 report issued by the Department of Ecology described data showing that tribal fish consumption levels of resident fish, especially in Western Washington, exceed Washington Department of Health safe consumption limits.25 Moreover, the Utah incinerator initially proposed for use by Ecology is located approximately 30 miles northwest of the Skull Valley Indian Reservation, home to the Skull Valley Band of Goshute Indians of Utah. As the Skull Valley Tribe is likely to suffer disproportionate impacts from any PFAS incineration at Clean Harbors’ Aragonite incinerator, it is critical that Ecology consider those impacts in its EIS, along with the heightened impacts on PFAS-contaminated communities and populations from the potential release of additional PFAS into the environment.

VII. Ecology Should Consider the Endangered Species Impacts Associated With All Disposal Options

In addition to their human health impacts, PFAS exposures threaten endangered species and other ecological resources.26 It is critical that Ecology evaluate these impacts as well, particularly given the existence of more than 40 threatened or endangered species—and more than 160 “sensitive species” that “warrant special attention and management to keep them from becoming listed in the future”—in Utah, where Ecology had initially proposed shipping its PFAS

21 Id. § 197-11-080(3)(b).
26 See SERDP, “Approach for Assessing PFAS Risk to Threatened and Endangered Species,” (May 2020), https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/ER18-1653 (“As PFAS do not degrade in the environment and have been measured in aquatic and terrestrial wildlife, their potential toxicity to wildlife is a concern.”).
for incineration. Many of these species have habitat in and around the Great Salt Lake, which is located less than 30 miles from the previously proposed incinerator. The Strategic Environmental Research and Development Program—a partnership between EPA, the Department of Defense, and the Department of Energy, has prepared *Guidance for Assessing the Ecological Risks of PFASs to Threatened and Endangered Species at Aqueous Film Forming Foam-Impacted Sites*. Ecology should use that guidance, and adapt it as necessary, to evaluate the impacts to threatened, endangered, and other vulnerable species from its PFAS incineration.

Conclusion

We applaud Ecology’s decision to evaluate the impacts of its PFAS disposal in an EIS. This analysis is sorely needed, and it positions Washington State not only to make a more informed decision about the fate of its AFFF but also to assume a leading role on the issue for local, state, and federal agencies across the nation. To make the most of this opportunity, we encourage Ecology to consider the foregoing comments, to collaborate with impacted communities and other expert agencies, and to ensure that any forthcoming PFAS disposal decisions are protective of human health and the environment.

Respectfully submitted,

/s/Jonathan Kalmuss-Katz
Earthjustice
48 Wall Street, 15th Floor
New York, NY 10005
jkalmusskatz@earthjustice.org
Tel: (212) 845-7376

/s/Sonya Lunder
Sierra Club
1650 38th Street, Suite 102W
Boulder, CO 80301
Sonya.Lunder@sierraclub.org
Tel: (303) 449-5595 ext. 102

Exhibit A
October 1, 2020

Submitted via electronic mail to sean.smith@ecy.wa.gov

Sean Smith
Hazardous Waste and Toxics Reduction
Washington Department of Ecology
sean.smith@ecy.wa.gov
(425) 649-4495

Re: Comments on the September 1, 2020 Aqueous Film Forming Foam Collection, Transport, and Incineration Program by Washington Department of Ecology

On behalf of the Sierra Club and Earthjustice, we thank the Department of Ecology for the opportunity to comment on its proposed plans for the management of Aqueous Fire Fighting Foams (AFFF) made from per- and polyfluoroalkyl substances (PFAS).

We commend the Department's leadership in addressing the threat of PFAS chemicals broadly and the significant resources the state has committed to getting PFAS-based AFFF out of use and removed from fire stations. Washington’s investment in timely containment of AFFF is a model that we hope other states follow.

Yet we have serious concerns about Ecology’s proposal to send its collected AFFF to an out-of-state hazardous waste incinerator for combustion. Our review of the scientific literature suggests that, instead of destroying PFAS, incineration risks redistributing these highly persistent chemicals and breakdown products into the atmosphere and back into circulation in the environment. This would simply transfer the harmful chemicals in AFFF from the firehouses of Washington to the air of Utah and beyond.

The environmental and health impacts from incineration are not fully addressed in Ecology’s State Environmental Policy Act (SEPA) analysis or its proposed Determination of Nonsignificance (DNS). However, there is an available alternative that would realize the Department’s objectives of PFAS collection and management without the adverse effects of incineration. We urge Ecology not to incinerate its collected AFFF but to instead arrange for limited-term storage of that foam at a permitted storage facility while safer disposal technologies are developed and validated to be used nationally. Our specific concerns and recommendations are discussed in more detail below.

Existing incineration technologies are not proven to destroy PFAS chemicals and there is significant evidence that they lead to releases of dangerous products. Moreover, there are not yet
basic methods to reliably determine what is released from an incinerator after PFAS chemicals are put through it.

The United State Environmental Protection Agency (EPA) recently acknowledged risks and data gaps related to PFAS incineration that cast doubt upon the conclusion that incinerators will destroy PFAS compounds:1,2

- PFAS incineration studies are incomplete due to the lack of necessary measurement methods;
- The effectiveness of PFAS incineration and type of combustion byproducts generated are not well understood;
- Fluorinated compounds are more likely than other halogenated compounds to recombine during the incineration process to form products of incomplete combustion.

The Department of Defense (DOD) has acknowledged a similar set of issues. In a 2017 grant solicitation for research into alternative destruction methods, DOD cited key challenges with incineration that included “...no precedent to predict products of pyrolysis or combustion, temperatures at which these will occur, or the extent of destruction that will be realized,” and cautioned that, “many likely byproducts will also be environmentally unsatisfactory -- e.g., any volatile perfluoroalkane will be a greenhouse gas -- or toxic...”3

While there is a compelling need to collect PFAS-based AFFF to prevent exposures and further releases, the lack of validated methods to destroy the chemicals presents challenges for states like Washington. The need for effective destruction methods is widely recognized. EPA recently announced a design challenge to speed the development of non-incineration methods to destroy unused AFFF.4 For its part, the Department of Defense has been actively funding research into non-incineration destruction techniques for PFAS-based fire fighting foams for years.

The EPA also claims to be working to develop and validate the analytical methods that will allow it and others to reliably measure PFAS and breakdown products in air and other media. Such tools are essential to allow regulators to determine whether the extremely strong carbon-fluorine bonds in PFAS can be broken in the conditions of a hazardous waste incinerator, and whether emissions controls can trap and remove byproducts. Until these methods are available there is no way to substantiate that incinerators like Clean Harbors Aragonite can effectively destroy the compounds.

2. Existing Data Shows the Formation of Dangerous Byproducts From PFAS Incineration.

We reviewed published studies related to PFAS breakdown at high heat. Scientists are plagued by measurement challenges—studies have unacceptably high detection limits and/or analyze for just a limited number of potential breakdown products. Even so, several of the studies Ecology cites as proof of justification for incineration actually detected the formation of potent greenhouse gases, carbon tetrafluoride and hexafluoroethane.5,6

We have identified the shortcomings of industry-sponsored incineration research and available evidence from other peer-reviewed experimental studies. Collectively, the data suggest that some PFAS can break down at high heat but more sensitive methods will be needed to ensure that incineration results in a high level of thermal destruction.7 The PFAS form a wide range of fluorochemicals with varied physical and chemical qualities. In addition to the one- and two-carbon greenhouse gases, these also include fluorinated acetic acids, dioxins and furans. Even complete destruction or “mineralization” of PFAS would convert all fluorine to hydrogen fluoride which is highly caustic and corrosive, in addition to being acutely toxic to people.

Much of the published incineration research for PFAS has been done at bench scale using just milligrams of starting materials, and in optimized temperature and handling protocols. These findings must be replicated at an operational scale.

See Appendix A for a detailed review of the peer reviewed literature relating to the safety and effectiveness of thermal treatments to destroy PFAS chemicals.

3. Commercial Hazardous Waste Incinerators Like Clean Harbors Aragonite Will Not Achieve the Idealized Conditions of Experimental Studies.

The facility that the Department of Ecology has proposed to use for PFAS incineration has a history of operational and compliance issues, and the operating parameters proposed by the Department are beyond the permitted capability of this facility.

Commercial hazardous waste incinerators are plagued by compliance violations and safety issues. The Clean Harbors Aragonite facility is no exception, with several recent permit violations that should raise red flags.

Ecology shared the results of the most recent safety inspection, in which Aragonite was cited for mishandling of harmful compounds like mercury and PCBs, and violations related to bypassing the emissions control equipment.

Even the design parameters for the proposed facility are outside what is already established to be a minimum requirement for any treatment for PFAS.

The temperature and holding times that Ecology will mandate for incineration of PFAS wastes are at the outer edge of operating conditions for the Aragonite incinerator. In its Determination of Nonsignificance, Ecology says it will require Clean Harbors to “expose the PFAS foam to temperatures in excess of 1000°C with hold times of two seconds or more.” However, in a September 2020 meeting Ecology indicated it will require temperatures of 1300°C and a two-second residence time in the afterburner. EPA indicates that temperatures in excess of 1400°C are needed to destroy carbon tetrachloride, which is a potent greenhouse gas.

Our technical consultant suggests that it could require a change to the facility’s operating permit to achieve temperatures of 1300°C, as Ecology suggests it will require. Aragonite’s operating permit indicates that the facility has been granted a waiver to operate at lower temperatures when incinerating PCBs, which causes further concern. EPA has waived the requirement of a temperature of 1200°C (2192°F) at the afterburner exit to “allow a waste feed cutoff if the temperature drops to less than [1092°C] for more than 60 seconds.”

4. Incineration Poses a Threat to the Adjacent to the Skull Valley Goshute Reservation.

The Aragonite incinerator is also located adjacent to tribal lands of the Skull Valley Goshute Reservation. Residual PFAS and toxic byproducts in waste ash will be shipped to the Grassy Mountain hazardous waste landfill south of the incinerator and reservation for perpetual storage and management. The region is heavily impacted by toxic industries, including a nerve agent storage site. Ecology has not considered the tribal impacts and environmental justice implications of its actions.

5. The Department’s Proposed PFAS Incineration Requires Additional SEPA Analysis

When enacting SEPA, the state legislature declared the protection of the environment to be a fundamental state priority. SEPA provides that “[t]he legislature recognizes that each person

13 Wash. Rev. Code § 43.21C.010.
has a fundamental and inalienable right to a healthful environment and that each person has a responsibility to contribute to the preservation and enhancement of the environment."\(^{14}\) This policy statement "indicates ... the basic importance of environmental concerns to the people of this state."\(^{15}\) At the heart of SEPA is a requirement to fully analyze the environmental impact of government decisions that have a significant impact on the environment.\(^{16}\)

Under SEPA, an environmental impact statement (EIS) is required if a government action has a significant effect on the quality of the environment.\(^{17}\) An action has a significant environmental effect, and thus requires an EIS, if it presents a "reasonable likelihood of more than a moderate adverse impact on environmental quality."\(^{18}\) To determine whether an EIS is needed, agencies make a "threshold determination" of environmental significance, often guided by a SEPA checklist.\(^{19}\) If, in reviewing a project, the agency concludes that there "will be no probable significant adverse environmental impacts from a proposal," it may issue a Determination of Nonsignificance (DNS) and proceed without further review.\(^{20}\) In contrast, if a threshold determination concludes that the project "may have a probable significant adverse environmental impact," the agency must mitigate that impact or conduct a full EIS.\(^{21}\)

Here, Ecology prepared a SEPA checklist and proposed a DNS for its AFFF Collection Program. However, the record does not support that determination. First, Ecology concedes that it lacks sufficient information to adequately evaluate the effects of PFAS incineration. Second, the limited information that is available indicates a reasonable likelihood of serious impacts from PFAS incineration. Finally, while Ecology compared PFAS incineration to two alternatives (land disposal and indefinite, on-site stockpiling of AFFF), Ecology failed to consider temporary, off-site storage at its selected disposal facility—an available alternative that would achieve the objectives of Ecology’s proposed action with far fewer adverse environmental impacts. Ecology should pursue that commercial storage alternative, which would avoid the significant impacts associated with incineration and obviate the need for an EIS.

A. Ecology lacks sufficient information about PFAS incineration to support its DNS

As previously described, Ecology lacks sufficient information about the effects of PFAS incineration to meaningfully evaluate the consequences of its AFFF Collection Program and to make a Determination of Nonsignificance. EPA—the federal agency charged with regulating the incinerator at issue—has warned that "the effectiveness of incineration to destroy PFAS compounds and the tendency for formation of fluorinated or mixed halogenated organic byproducts is not well understood."\(^{21}\) The absence of this information is the result of inadequate testing; to date, "[f]ew experiments have been conducted under ... conditions representative of field-scale incineration," and the studies that do exist "have been incomplete due to lack of necessary measurement methods suitable for the comprehensive characterization of fluorinated..."
and mixed halogenated organic compounds." The Department of Defense—the nation’s largest user of AFFF—has similarly warned that “there is no precedent to predict products of [AFFF] combustion.” Yet Ecology did not attempt to fill these data gaps before proposing the incineration of more than 30,000 to 40,000 gallons of AFFF, the effects of which Ecology admits are “not well studied.”

These data gaps are fatal to Ecology’s DNS, which must be “based on information sufficient to evaluate the proposal’s environmental impact.” SEPA thus requires agencies to gather necessary information, so their decisions are “shaped[d] ... by deliberation, not default.” Because Ecology lacks sufficient information to determine the likely byproducts of its PFAS incineration—which, as described above, may include toxic chemicals and potent greenhouse gases—it cannot support a DNS and must prepare a full EIS. Although SEPA permits agencies to proceed despite the absence of certain information where “the costs of obtaining [the missing information] are exorbitant” or “the means to obtain it are speculative or not known,” Ecology has not made either of those findings in its DNS. Nor has Ecology provided a “worst case analysis” to compensate for the absence of information, as required by its SEPA regulations. Instead, Ecology improperly presumes the absence of impacts from the absence of information and proposes a DNS that its analyses cannot support.

B. PFAS incineration presents a reasonable probability of significant environmental impacts

The limited information that is available on PFAS incineration confirms the existence of risks that preclude the issuance of a DNS. Under SEPA, Ecology can issue a DNS only if it “determines there will be no probable significant adverse environmental impacts from a proposal.” Here, Ecology cannot make that finding, because its SEPA checklist confirms the “reasonable likelihood of more than a moderate adverse impact on environmental quality.”

According to Ecology, AFFF incineration “can produce air emissions” which “deposit[] upon the land and surface water.” “The deposition can then be taken up by biota including humans, potentially negatively impacting their growth and development.” The potential emissions from PFAS incineration include carbon tetrafluoride (a potent greenhouse gas with more than 6,000 times the global warming potential of carbon dioxide), fluoroform (a potent greenhouse gas with more 12,000 times the global warming potential of carbon dioxide), perfluoroisobutylene (a toxic chemical that has been used as a chemical warfare agent), hydrogen fluoride (a highly toxic chemical that can damage lung tissue and cause severe burns), and other PFAS chemicals.

26 Id.
27 Id. § 197-11-340(1).
28 Id. § 197-11-794.
Ecology does not dispute that the emission of greenhouse gasses, toxic chemicals, or PFAS would have “more than a moderate adverse impact on environmental quality.” Therefore, the only question is whether those incineration byproducts are “reasonably likely,” as opposed to “merely speculative.”

Ecology does not answer that question, but the Department of Defense has stated that PFAS incineration is “likely” to produce “environmentally unsatisfactory ... or toxic” byproducts. Moreover, the Environmental Protection Agency recently affirmed the “need for new non-thermal technologies that destroy PFAS, without generating hazardous byproducts” and established a prize for the development of alternatives to incineration. The existence of that incentive itself is a further acknowledgment of the risks associated with PFAS incineration.

Instead of measuring the likelihood that PFAS incineration would result in environmental harm, Ecology erroneously asserts that “[i]ncineration is the only technology available now that can under appropriate conditions, process large volumes of AFFF foam [and] destroy the foam’s PFAS molecule.” As described above, there is no evidence that incineration “destroys” PFAS chemicals, as opposed to altering their chemical structure and emitting new PFAS as byproducts of incomplete combustion. Moreover, PFAS incineration would require an EIS even if it were the best available treatment technology (and it is not), since the threshold determination under SEPA turns solely on the impacts of the proposed action, which here are likely to be significant. Therefore, if Ecology proceeds with the AFFF Collection Program in its current form, it must prepare an EIS.

C. Ecology failed to consider the reasonable alternative of commercial PFAS storage

There is a readily available alternative that could avoid the significant impacts associated with PFAS incineration and eliminate the need for an EIS, while still realizing the core objections of Ecology’s AFFF Collection Program. Instead of incinerating its PFAS-containing foam, Ecology could collect unused foam from fire stations across the state and temporarily store it at a permitted hazardous waste storage facility, such as the Clean Harbors Aragonite facility. In addition to its incineration capacity, that facility has “ample on-site storage capacity,” including “a bulk liquid tank farm (sixteen ~30,000 gallon tanks); container storage areas (~12,000 55-gallon drum capacity); direct burn tanker storage areas (~30,000 gallons total capacity); sludge storage tanks (~38,000 gallon total capacity); and bulk solids storage tanks (~1100 yd³ total capacity).” Use of that storage capacity would reduce the risk of accidental releases while Ecology, EPA, and others evaluate long-term treatment alternatives. Temporary commercial storage of AFFF is thus a “[r]easonable alternative,” which Ecology failed to consider in its SEPA Checklist.

In its review of the AFFF Collection Project, Ecology did reject the alternative of “hold[ing] stockpiles [of AFFF] indefinitely until there is more research and consensus on how to best

29 Id.
30 Id. §§ 197-11-060(4)(a), 197-11-782.
32 Wash. Admin. Code § 197-11-786 (defining “reasonable alternative” as “an action that could feasibly attain or approximate a proposal’s objectives, but at a lower environmental cost or decreased level of environmental degradation”).
dispose of PFAS waste streams” because incineration alternatives “are not yet feasible at a large scale.” But the storage of AFFF need not be indefinite, and it can be conducted under controlled conditions that minimize the likelihood of a PFAS release. Moreover, commercial storage would allow EPA and others to develop additional information about the effects of PFAS incineration and alternative disposal technologies. EPA has stated that it plans to release a new method to measure PFAS air emissions over the coming months, and that it will release refined methods to measure products of incomplete PFAS combustion in the third quarter of 2021. That soon-to-be-released information would help Ecology better understand the impacts of PFAS incineration and make an informed decision concerning different disposal options. There is no reason to rush into a poorly reviewed incineration alternative that presents a serious threat to public health and the environment.

6. Conclusion

For the foregoing reasons, we urge the Department of Ecology to temporarily store, as opposed to incinerate, the PFAS collected under the AFFF Collection Project.

Respectfully submitted,

Sonya Lunder
Sierra Club
1650 38th Street, Suite 102W
Boulder, CO 80301
Sonya.Lunder@sierraclub.org
Tel: 303.449-5595 ext 102

Jonathan Kalmuss-Katz
Earthjustice
48 Wall Street, 15th Floor
New York, NY 10005
jkalmusskatz@earthjustice.org
Tel: 212.845.7376

Appendix A

A careful review of the scientific literature reveals gaps in assessing each of these outcomes for the incineration of PFAS waste. To ensure safe destruction of PFAS we need answers to three questions:

1. Are the original PFAS chemicals destroyed by the technology?
2. What do they turn into?
3. Does the output from the destruction process release any harmful chemicals into the environment?

Are the original PFAS destroyed in incinerators?
Washington Ecology cites several studies as proof of thermal breakdown of PFAS chemicals

- “Studies in 2005 and 2014 showed that perfluorooctanoic acid (PFOA) was not measured at detectable levels after a 2 second residence time at 1000°C.” (Wash Ecology 2020 citing: Yamada 2005, Taylor 2014)

- “Additionally, research by 3M found that properly operating incineration systems do not release PFOS and C₈ perfluorosulfonamides into the environment.” (Wash Ecology 2020 citing: Taylor 2003)

Both studies lack the sensitivity to ensure a high level of thermal destruction. Destruction efficiencies of 99.9999% are required for highly toxic wastes, like PCBs (USEPA 2019a). The 2003 and 2005 studies didn’t detect PFOS and PFOA, but had a detection limit of 0.1%, which means concentrations of up to 1,000 parts per million of PFOS or PFOA in air would not be detected under the conditions of this study.

A 0.1% failure rate could result in pounds of PFAS escaping into the air from the 30,000 to 40,000 gallons of PFAS fire fighting foam that Washington seeks to incinerate.

EPA is developing methods to measure individual PFAS chemicals at a higher level of sensitivity in air samples (USEPA 2020a).

What are the potential byproducts of PFAS incineration?

The existing data fall short in assessing the types and quantities of chemicals formed during thermal treatments, and the hazard they may pose toward people and the environment.

Like other aspects of PFAS disposal, ensuring safety is challenging due to methodological limitations. As many scientists state, “There are no proven analytical technologies which have
been demonstrated to detect all potential fluoro-organic by-products,” (Horst 2020). Of particular concern are PFAS that get volatilized or transformed into volatile organofluorine compounds and escaped detection (Watanabe 2018).

Independent studies detect a range of concerning breakdown products in bench scale incineration studies. They include:

Greenhouse gases - The original studies promoted by Washington Ecology and others as proof of incineration effectiveness both measured several potent greenhouse gases and other breakdown products (Taylor 2003, Yamada 2005). In Taylor (2003) PFOS byproducts include: fluorobenzene, one- and two- carbon fluoroalkanes (tetrafluoromethane, fluoroform, and hexafluoroethane), and fluoroalkenes (1,1-difluoroethene and 1,2-difluoroethene).

Yamada (2005) heated PTFE (a polytetrafluoroethylene polymer) to a maximum of 1000°C with a 2 second residency time, and detected one- and two- carbon fluorochemicals (fluoroform ion and fluoropropene ion). Concentrations of these breakdown products were estimated to be less than or equal to 1000 parts per million or 0.1%.

In addition to the industry studies, another by Garcia (2007) detected one-, two- and three-chain fluorochemical formation from the thermal degradation of PTFE at temperatures between 750 to 1050°C.

The global warming potential of fluorine-containing byproducts is thousands of times more potent than carbon dioxide, which has a Global Warming Potential of 1 on this unitless scale (GGP 2016).

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Global Warming Potential over 100 year time horizon*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon tetrafluoride (CF4)</td>
<td>6,630</td>
</tr>
<tr>
<td>Fluoroform (CHF3)</td>
<td>12,400</td>
</tr>
<tr>
<td>Hexafluoroethane (C2F6)</td>
<td>11,100</td>
</tr>
<tr>
<td>Perfluoropropane (C3F8)</td>
<td>8,900</td>
</tr>
</tbody>
</table>

* the Global Warming Potential of carbon dioxide is 1.

Fluorinated acetic acids - mono-, di-, and tri-fluoroacetic acids are common thermal breakdown products of PTFE, particularly at lower heats (Ellis 2001). They are toxic to aquatic ecosystems and widely detected in the atmosphere and in precipitation. Some scientists suggest they may be partially responsible for pulmonary edema seen in workers at PTFE plants (Garcia 2007).
Dioxins and furans - Dioxins and furans can be formed in municipal solid waste incinerators when PFAS are incinerated alongside other wastes. (Merino 2016, citing Tupperainen 1998 and McKay 2002). Methodological constraints hinder monitoring for dioxins and furans in other PFAS incineration studies (Aleksandrov 2019).

Un- or partially-reacted PFAS - EPA lists “shorter chain PFAS, partially fluorinated PFAS, and defunctionalized perfluorinated carbon chains” as other potential thermal by-products (USEPA 2020a). Short-chain polyfluorinated alkyl acids require higher temperatures to achieve thermal destruction than long-chain acids (Watanabe 2016). Wang tested for PFAS in air at two municipal solid waste incinerator facilities in China. They reporting higher concentrations of PFOA in air at the incinerator sites compared to an upwind site, while fluorotelomer concentrations were comparable across all samples (Wang 2020).

Hydrogen fluoride - The complete liberation of fluorine from carbon sources in the incinerator would produce hydrogen fluoride, an acutely toxic and corrosive gas. Hydrogen fluoride has to be managed to ensure it doesn’t impact machinery of the incinerator itself (USEPA 2020b). As the ITRC reports in its PFAS destruction guidance related to incineration, “there have not been sufficient pilot studies to determine the validity of this concern. This could pose serious health and safety issues and could compromise equipment components.” (ITRC 2020)

EPA developing untargeted analytical method, which will help map the full extent of PFAS breakdown products (USEPA 2020a). This is not expected until 2021 at the earliest.

How many breakdown products are present in stack gases or waste ash?

The third major aspect of uncertainty is the ability of incinerator emission controls to capture and contain any harmful byproducts. This is obviously impossible to gauge without full knowledge of the products and their physical and chemical characteristics.

EPA and scientists are optimizing methods that quantify the total organic fluorine in air or other environmental media. These methods are also expected to take at least another year to validate.

They will provide important verification about whether PFAS breakdown happens in the idealized setting of an experimental laboratory, not to mention real world operating conditions of a functional incinerator.

Studies note increased risk of emissions and discharges of products of incomplete combustion during non-normal operating conditions (upset conditions) including start up, shut down, malfunction or during equipment failure (NRC 2000). One study reviewed facility-specific data
on pollutants emitted during startup and shutdown conditions. There was wide variability but 88% of facilities studied had vastly increased emissions of dioxins and furans, dioxin/furan precursors, and carbon monoxide during start up or shut down monitoring compared to normal operating conditions, likely due to incomplete combustion (Obaid 2017).

The portion of incineration byproducts stripped by emission control systems will end up in incineration ash requiring perpetual storage in a hazardous waste landfill or other site. Several studies find incineration reduces but does not eliminate the PFAS in ash residues, and the chemicals are found in leachate from landfills accepting incinerator ash (Solo-Gabriele 2020). Therefore, incineration does not terminate the management responsibilities for entities disposing of PFAS wastes.

REFERENCES

Amy Kyle

First I want to recognize the work that the State of Washington has done in preparing its draft PFAS Action Plan. Few if any states have prepared as comprehensive an analysis as Washington has.

One suggestion for the EIS is to bring an equity analysis into the project. Designing a useful way to assess equity concerns that is responsive to the parties involved would seem to be an important step in this analysis because of the State's commitment to environmental justice. Having a way to explicitly assess how different alternatives may affect different groups and areas, and particularly how they may affect communities of color and Tribal communities and resources, could contribute to a successful and meaningful assessment.

A second suggestion has to do with the implications of intervening to stop the movement of PFAS materials into the environment and into drinking water sources. The AFFF collection program retrieves unwanted PFAS materials before they can be released into the environment and disperse into water or other resources.

It may be informative to compare this kind of early collection approach to the feasibility and cost of trying to deal with PFAS compounds after they get into drinking water and have to be treated out (and then treatment media dealt with).

The draft Action Plan seems to place more emphasis on treating drinking water than on preventing contamination of drinking water. The EIS process might be an opportunity to consider whether more emphasis on collecting PFAS materials to avoid contamination of water sources might be more feasible for some situations and deserve more attention. I would also suggest that cost estimates for drinking water treatment in the draft Action Plan are probably understated.

Thank you for considering these comments.
As a resident of Washington State and employee of Pasco Fire Department who uses firefighting foams for a variety of fire types, I applaud the state for being proactive and funding the safe disposal of PFAS-containing foams. The pervasive nature of these chemicals and their long-term health affects make the safe disposal of these foams important to all Washingtonians. The program is well conceived the communications from DOE have been informative and timely.

I have a concern for fire departments that serve FAA indexed airports with Aircraft Rescue and Firefighting (ARFF) responsibilities. The timeline of the foam collection program may conflict with FAA federally mandated firefighting foam requirements. There are 10 commercial service primary airports in Washington State that will be directly impacted. Title 14 Code of Federal Regulations (CFR) Part 139 requires that these airports carry foams that meet military specifications (MIL-PRF-24385). Currently, all foams that meet MIL-PRF-24385 are "legacy" AFFF or C6 formulations, both of which contain fluorinated surfactants. While C6 foams are considered the "safer" alternative because they bioaccumulate at a much lower rate and are less biopersistent, concerns remain about their toxicity, biodegradability, mobility and persistence in the environment.

Included in the FAA Reauthorization Act of 2018 is a mandate directing the FAA to stop requiring the use of fluorinated foam no later than October 4, 2021. This means that departments with ARFF responsibilities may be legally bound to keep legacy or C6 foams past the collection dates provided by the program, causing thousands of gallons to slip through the cracks of the program. Providing a foam collection after October 2021 should allow these departments to participate and ensure that these pervasive chemicals do not further contaminate our soil and groundwater. Thank you for your consideration.

Mike Maier
Fire Captain
Pasco Fire Department
1011 E Ainsworth Ave
Pasco, WA 99301
Mountain View Fire and Rescue

Mountain View Fire and Rescue in Auburn, Washington is looking to safely dispose of or transfer the current unused volume of foam we have onsite to an agency who can safely dispose of the foam. The storage of this foam has become a burden for our fire agency to store the unusable foam. We are looking for assistance with a remedy to surplus/dispose of the foam.

Dawn Judkins
Deputy Chief
Mountain View Fire and Rescue
32316 148th Ave SE, Auburn, WA 98092
Norm Payton
Environmental Impact Statement - PFAS in Firefighting Foam

Washington State Department of Transportation (WSDOT) uses PFAS containing firefighting foam as part of our suppression systems in the MT Baker, Mercer Island, and Montlake Lid Tunnels. WSDOT is looking for assistance in disposing of this foam. Currently, there is 17,755 gallons of PFAS containing firefighting foam in the lines and tanks that make up these three tunnel suppression systems. WSDOT is now evaluating alternate Ecology approved foam systems that can be used in existing and/or retrofitted systems. Funding has yet to be identified that will allow purchase of new Ecology approved foam or retrofit the systems where needed, thus it unclear when WSDOT will be able to dispose of the foam currently in place to suppress a fire. WSDOT has an additional 2,725 gallons of foam in drums that will also need disposal. In total WSDOT will need assistance to dispose of 20,525 gallons of PFAS containing firefighting foam.

Norm Payton
Environmental Policy Manager
HQ Maintenance Operations
Washington State Department of Transportation
PO Box 47358
Olympia, WA 98504-7358
Thermal Destruction of PFAS – Relevant References

USEPA. Interim guidance on the destruction and disposal of perfluoroalkyl and polyfluoroalkyl substances and materials containing perfluoroalkyl and polyfluoroalkyl substances. (December 18, 2020). [EPA-HQ-OLEM-2020-0527-0002](https://www.epa.gov/)

Yamada T et al. Thermal degradation of fluorotelemetry treated articles and related materials. *Chemosphere* 61:974-984