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Per- and Poly-Fluorinated Alkyl Substances Chemical Action Plan 

(PFAS CAP) – 2019 Updates 

New Fate and Transport Chapter  

In 2017, the Washington State departments of Ecology and Health shared draft PFAS CAP 
chapters with external parties for review and comment.  Comments received are available 
online. This document is either an update of a 2017 draft or a new ‘chapter.’  Ecology and 
Health are sharing chapters with interested parties prior to the April 2019 PFAS CAP webinar 
(previously planned for March). Updates will be discussed during the April webinar.  We expect 
to publish the entire Draft PFAS CAP around June 2019 followed by a 60-day comment period. 
 
In April 2019, Ecology and Health will host a PFAS CAP webinar (date not yet set) to: 

 Briefly review activities underway: firefighting foam, food packaging, drinking water. 

 Review updated/new chapters – comments will be accepted on the updated chapters.  
Responses will be provided after the 2019 public comment period (summer 2019). 

 Discuss preliminary recommendations – requesting comments and suggestions from 
interested parties – due a week after the webinar.  

 Submit comments online. 
 
Quick summary of PFAS CAP efforts: 

 PFAS CAP Advisory Committee and interested parties met in 2016, 2017 and 2018. 

 September 2017 Draft PFAS CAP chapters posted:  

Intro/Scope 
Biosolids 
Chemistry 
Ecological Toxicology 

Environment 
Health 
Regulations 
Uses/Sources 

 March of 2018, Ecology and Health published the Interim PFAS CAP. 

 The 2019 updated PFAS CAP “chapters” to be posted (in the order we expect to post on the 
PFAS CAP website): 

Biosolids 
Ecological Toxicology 
Environment 
Regulations 
Uses/Sources  
Health 

Analytical methods (new) 
Chemistry 
Fate and Transport (new) 
Economic analysis (new) 
Preliminary 
   Recommendations (new) 

 
Questions - contact Kara Steward at kara.steward@ecy.wa.gov.  

This document is posted on the PFAS CAP Website - 

https://www.ezview.wa.gov/?alias=1962&pageid=37105 

 

http://wt.ecology.commentinput.com/?id=GAaDQ
http://wt.ecology.commentinput.com/?id=x2ChA
mailto:kara.steward@ecy.wa.gov
https://www.ezview.wa.gov/?alias=1962&pageid=37105
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Appendix #: Fate and Transport 

Abstract 

This chapter explores the chemical transformation and fate of per- and polyfluorinated alkyl 

substances (PFAS) released to the environment. 

Key Points Include: 

Transformation 

 All PFAS are either perfluoroalyl acids (PFAAs) or PFAA precursors 

 It is believed that all PFAA precursors will transform to PFAAs with a timeframe of 

hours to hundreds of years 

 Precursor hazard and exposure should be considered when evaluating PFAS risk 

 PFAS polymer will likely serve as a continued source of PFAS emission 

Fate 

 PFAS can be released as a solid, liquid, or gas 

 Gas phase transport can cause PFAS contamination long distances from emission source 

 With the exception of polymers, most PFAS are water soluble and can be transported by 

water movement 

 Adsorption to carbon compounds in soil and sediments can slow PFAS transport by 

groundwater and surface water 

 “Short-chain” PFAS are more mobile, less bioaccumulative, and equally persistent as 

“long-chain” versions 

 Landfill waste and biosolids from composting and wastewater treatment plants (WWTPs) 

will serve as a continued sources of PFAS emissions into the environment 

 Chemical transformation of precursor compounds may change preferential partitioning 

into transport media and rate of transport 

 PFAS can bio-accumulate in plants and animals, and bio-magnify in higher organisms in 

the food chain 

1.0 Introduction  

With thousands of different per- and polyfluorinated alkyl substances (PFAS) currently on the 

market, their environmental fate and transport, which describes the chemical transformation and 

geographic distribution of compounds after release to the environment, can vary greatly. PFAS 

can exist in many different forms (vapor, water, solid) and will partition (group with separate 

media) differently depending on the type of compound. Rate of PFAS chemical transformation 

can also vary quite dramatically depending on the chemical in question, the phase, and the 

environment where it is located. Some compounds have a half-life as low as hours in the 

environment, while others do not transform naturally. In this chapter, we will start by reviewing 

PFAS transformation, and then proceed to transport and, finally, partitioning of PFAS.  
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2.0 Transformation  

More than 4730 PFAS have been registered in the Chemical Abstract Service, with many of 

these compounds likely containing other unintentional PFAS as impurities1,2. All of these PFAS 

are either a type of PFAS called perfluoroalkyl acids (PFAAs) or substances that eventually 

transform into PFAAs (precursors). PFAAs have not been shown to degrade or transform under 

natural conditions3,4.  

The stability of PFAAs is due to the strength of the high energy carbon-fluorine bond (531.5 

kJ/mol1)5 and the shielding effect of the carbon backbone conformation6. Precursor compounds, 

which will eventually turn into PFAAs, have additional moieties added on to the carbon-fluorine 

chain where other substances and organisms can attack and degrade them. After this process, all 

that is remaining is the carbon-fluorine backbone and a headgroup: a PFAA. Thus, most 

scientists consider PFAAs “dead-end” chemicals because they will not undergo further 

transformation in the natural environment, and will most likely exist longer than humans can 

observe.  

There has been one controversial study7,8 showing slight degradation of PFAAs under extreme 

natural conditions. There has also been successful decomposition of PFAAs in the lab using 

experimental techniques9–11 such as fungal treatment12 and high temperature reaction with 

persulfate13. However, current research suggests that all PFAS ever produced will eventually 

transform into a PFAA and never degrade under common conditions in our environment.  

The timeframe for the transformation from precursor to PFAA depends on the compound and the 

conditions. Half-lives are not known or studied for most precursors, with some calculated values 

ranging from hours to more than a thousand years 14–16(Figure 1). With the vast number of 

potential starting materials and environments, the exact mechanism and changes that occur for 

each precursor is unknown. However, scientists have studied many changes in the laboratory, 

and are starting to characterize transformations in the field. 

 

                                                 

1 kj/mol = kilojoule per mole – unit of energy per amount of material 
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Figure 1. A: Illustration of precursor transformation leading to PFAAs.  

B: Examples of precursor aerobic biotransformation to PFAAs with half-lives17–19. 

 

Thousands of PFAA Precursors 

Intermediate 
Transformation 
Products 

Approximately 25 
PFAA “Dead-End” 
Compounds 

C
n
F

2n+1
-SO

3
H 

C
n
F

2n+1
-COOH 

A. 

B. 



Chemical Action Plan for Per- and Polyfluorinated Alkyl Substances 

[Appendix #: Fate and Transport] 

New CAP Chapter – do not cite or quote 5 February 2019 

3.0 Abiotic Transformation 

Abiotic transformation (transformation without living organisms) can form both perfluoro-

sulfonic acids (PFSAs) and perfluoro-carboxylic acids (PFCAs)-the main two types of PFAAs, 

from a wide range of precursors. For example, reaction with hydroxyl radicals gives N-methyl 

perfluorobutane sulfonamidoethanol (NMeFBSE) a half-life of two days, and creates both 

sulfonic and carboxylic acid byproducts20. Additionally, fluorotelomer alcohol (FTOH) 

compounds have been found to transform in the atmosphere through reactions with chlorine and 

hydroxyl radicals to form PFCAs21,22. N-ethyl perflurobutanesulfonamide (NEtFBSA) can 

transform into PFCAs through a similar mechanism in the atmosphere, with a lifetime in air of 

20-50 days23.  

3.1 Biotic Aerobic Transformation 

Researchers have demonstrated aerobic biotransformation (transformation by organisms with 

access to oxygen) of PFAA precursors several times, and this type of modification is probably 

the most prevalent form of PFAS chemical transformation. Several studies have been performed 

with focus on transformation that may occur at wastewater treatment plants (WWTPs) or 

aqueous film forming foam (AFFF)-impacted sites24. Laboratory studies have shown degradation 

of FTOHs into PFCAs. In addition, N-ethyl perfluorooctane sulfanamido ethanol (N-EtFOSE) is 

biodegraded into perfluorooctane sulfonate (PFOS) with a half-life of 0.7-44 days18,25–27 and 

perflurorooctaneamido quaternary ammonium salt (PFOAAmS) transforms into 

perfluorooctanoic acid (PFOA) with a half-life of 142 days17. Perfluoroacylphosphates (POPs) 

have also been shown to biodegrade into FTOHs and eventually to PFCAs28. All precursors 

tested have shown the ability to be aerobically bio-transformed to PFAAs, with most 

perfluoralkane sulfonyl fluoride (PASF)-based substances eventually being bio-transformed into 

PFSAs while all FTOH based substances are eventually transformed into PFCAs29. 

3.2 Biotic Anaerobic Transformation 

Anaerobic biotransformation (transformation by organisms without oxygen) has been studied 

much less than aerobic biotransformation. Most evidence suggests that it is slower and 

transformation into final PFAA forms is less complete. For instance, some PFAA precursors 

have been shown to remain stable for long periods of time under anaerobic conditions30–32, with 

most fluorotelomer sulfonates (FTSAs) remaining more stable than FTOHs33. However, in 

general, anaerobic studies have had similar results to aerobic studies, with PFAAs not 

biodegrading and other compounds eventually leading to PFAAs.  

3.3 Consequences of Chemical Transformation 

Because of the transformation processes outlined above, even though production of PFOS was 

phased out in 2002 and production of PFOA was phased out in 2015, levels of PFAAs have 

continued to increase in wildlife14,34. Manufacturers continue to make precursor compounds, 

which will change into PFOS, PFOA, and other PFAAs once released to the environment. 

Tracking changes in environmental levels of all PFAS is difficult because there are a large 

number of precursors, and it is only practical to test for a small fraction in each experiment. Most 

precursors require advanced analytical methods to detect. These are expensive, available in only 

a few labs around the world, and often cannot accurately measure quantities of compounds. 
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Additionally, there are very few validated methods endorsed by governmental bodies, so much 

of the testing done uses experimental techniques. With different methods used by different 

researchers, comparing results from different studies can be poorly reliable.  

PFAA dead-end chemicals are the most prevalent and the most persistent type of PFAS, so they 

have been studied the most. However, the fact that several precursors have measurable levels in 

both surface waters35,36 and wildlife37 shows that it is not only PFAAs that have to be considered 

when evaluating impact and risk, since exposure to precursors can be significant. A study in the 

Baltic Sea found PFAAs and precursors in most aquatic organisms, but concluded that PFAA 

levels were not necessarily correlated with precursor intake38. This suggests that it is important to 

evaluate exposure to precursors and PFAAs separately when considering risk.   

In another example of precursor exposure, North Atlantic pilot whales do not contain the enzyme 

to convert perfluorooctanesulfonamide (PFOSA) to PFOS like most animals do, so when they 

adsorb PFOSA, they are exposed to its effects for much longer than other species14. Scientists 

will need to consider the rate of a chemical’s transformation to PFAA in addition to the chemical 

hazards of itself and the PFAA dead-end to get the full picture of risks involved with use and 

emission.  

The PFAS released to the environment from products and manufacturing operations transform 

over time into a variety of chemical transformation products. The lifetimes and toxicity of these 

individual transformation products and the final dead-end degradates all contribute to a still 

uncertain environmental impact. 

4.0 Polymers 

Polymers are a special class of PFAS to consider when looking at transformation and hazard. It 

is not only the polymer compound to consider, but also how the polymer backbone may degrade, 

and what unreacted monomers and catalysts may be present. There is evidence that bacteria or 

light can degrade some fluorotelomer based PFAS polymers. This would release soluble 

monomer or other PFAS fragments to the environment with a half-life of decades to  two 

centuries16,39–42. However, this finding  is still unsettled, due to alternate reports using different 

methods, which show a half-life of approximately 15,000 years for fluorotelomer-based acrylate 

polymers 43,44.  

The finding of a half-life of thousands of years contrasts with degradation times for similarly 

structured monomers, which have half-lives of days to years. Intact fluoropolymers are generally 

agreed to be inert and not bioavailable or bioaccumulative, suggesting minimal health impact45. 

If PFAS polymers, which are often used as oil- and water-resistant treatment for consumer 

products, degrade, then they could be  an potential source of PFAS emissions for decades or 

centuries if not properly disposed and contained in landfills46. One study suggests that 

degradation of polymers could increase PFAS loading to the environment by 4-8 times in coming 

years39. 

In addition to polymer degradation as a source of PFAS, the production of PFAS polymer 

requires the use of monomers and processing aids. These may be a source of PFAS emissions 

into the environment. In the past, PFOA was used as a processing aid in fluoropolymer 

manufacture47,48. Manufacturers have since switched to chemicals thought of as safer, such as or 
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Ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA) and Hexafluoropropylene oxide 

(HFPO) dimer acid (GenX)49. Although these substitutes are not used in the final polymer, they 

have been detected numerous times worldwide, including in drinking water in North Carolina 

and the Netherlands35,36,50. 

5.0 Emission Sources 

PFAS can be released into the environment either in the air (stack emissions), water 

(manufacturing discharge or AFFF application), or as a solid (solid waste from manufacturing or 

disposal of consumer goods). Properties of an individual PFAS compound will affect its 

solubility in water, adsorption to soil, or ability to exist as a gas. These attributes will affect the 

rate of transport. Chemical changes caused by environmental exposure further complicate the 

rate of transport. An emitted compound may initially have more affinity for one type of media, 

but as time passes, it may change and be more likely to exist in another (Figure 2).   

 

Figure 2. Conceptual site model for industrial site (Source: Adapted from L. Trozzolo, TRC, 

used with permission) 

5.1 Air 

When released to the air, such as through stack emissions, PFAS can be either in the gaseous 

phase as a vapor, or as an aerosol in small particles. Most PFAS are not very volatile, but those 

that are (mostly FTOHs) may also vaporize into a gas after emission as a liquid or solid. Anionic 

forms of PFAS, such as PFCAs at low pH, are more likely to be adsorbed to particulates in the 

air51. Once in the air, PFAS can travel large distances before deposition. Deposition occurs via 

settling of particulates or by transformation of vapor into a non-volatile compound. Deposition 

can occur either by dry deposition (particles landing by themselves) or by wet deposition 

(precipitation contributing to deposition)52.  

Short-range air transport causes PFAS distribution to be much more extensive than just water-

based transport, which is the focus of most concerns from manufacturing plants and regulators. 

Air-based transport can cause contamination of soil, groundwater, and surface water that 

otherwise would not be anticipated from merely looking at water flow. Long-range air transport 
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is responsible for the wide distribution of PFAS across the globe, as shown by their occurrence 

vast distances from all manufacturing sites, including both the Arctic and Antarctic. In addition, 

sea spray may help re-aerosolize PFAS that have been deposited in oceans53,54, contributing to 

further air-based transport.  

5.2 Water 

Most PFAS manufacturing processes involve aqueous solutions, which are often a mixture of 

compounds. Environmental release may be from a dilution by a large amount of water during 

manufacturing. Firefighting using AFFF represents a large source of release of water-based 

PFAS mixtures into the environment due to mixing of the compounds with water to form foam. 

Most PFAS transport easily through groundwater and surface water due to their high solubility. 

Dispersion, diffusion, and advection will all affect the movement of PFAS in water, but 

generally, the compounds will follow the water flow. It is estimated that the oceans are the main 

final sink for PFAS55.  

One important process that affects PFAS transportation and can complicate water transport is 

adsorption to organic compounds. Most PFAS have a fluorinated carbon “tail”, which is both 

hydrophobic and lipophobic, and a polar headgroup, which is hydrophilic. Depending on the 

types of tail and headgroup, properties of the compound will change. This means that different 

PFAS can have significantly different attraction to both water and soil. Hydrophobic, lipophobic, 

and electrostatic interactions will all influence the affinity for different phases. Due to the 

differences in the chemical and physical properties between the head and the tail, PFAS will 

often localize at phase interfaces, such as soil/water and water/air boundaries56,57.   

Individual PFAS will adsorb to organic carbon in soil to varying degrees using hydrophobic 

interactions or electrostatic interactions with minerals58. Scientist have mostly studied this 

interaction in PFAAs, which are relatively soluble in water over a wide range of pH. Because of 

this solubility, they move easily through water flow, either in groundwater, surface water, or 

through leaching. However, water transport can be slowed by association with organic carbon in 

soil56,58.  

PFSAs tend to adsorb more strongly to soil than PFCAs do56,58 and thus are less mobile. Longer 

carbon chain lengths are also generally associated with increased adsorption relative to shorter 

chains.56. This indicates that a partitioning may occur during wastewater treatment. Shorter 

chains tend to leave in the effluent and longer chained compounds are more likely to stay in the 

solid fraction.   

Adsorption of PFAS to soil increases as the soil’s total organic carbon percentage increases.  Soil 

type and its organic carbon content directly affects the leaching rate (or retention time) of PFAS 

when spilled on the ground such as during firefighting or training with AFFF.  In addition, the 

chemical constituents of the flammable materials onto which AFFF is applied may influence 

transport of PFAS through soil and groundwater. Spills into coarse, poorly aggregated soils (such 

as drainage ditches) will likely leach PFAS faster compared to soil with good structure and high 

organic carbon. 

The retention time  of PFAS in soil is dependent upon numerous site specific variables  though 

there is evidence that desorption  is often incomplete59.  Soil contaminated with PFAS may 
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remain as a low volume source of contamination for ground and surface water for a long time, 

complicating hazard assessment. 

5.3 Solids 

Solid phase PFAS contaminants will serve as potential future sources for emission. Solid phase 

PFAS are disposed in solid waste landfills or recycled in compost facilities60. Farmers often use 

compost as well as solid phase biosolids from WWTPs as amendments for agricultural soils. In 

the US, solid sewage sludge from WWTPs not used as biosolids is landfill disposed or 

incinerated.  

Due to the high solubility of most PFAS, compounds are susceptible to leaching from landfills 

and contaminated soils when exposed to water60–62. Leachate from PFAS contaminated landfills 

is estimated to contain around 600 kg per year of PFAS in the US62. Sources include products 

such as carpets and clothing, and leachate PFAS include PFOS, PFOA, perfluorohexane 

sulfonate (PFHxS), and many PFAA precursors61,63.  In Washington, landfill leachate is 

collected, tested, and either treated or discharged to a WWTP.  

See the biosolids chapter for a more detailed discussion of biosolids application and risk 

assessment.  

5.4 Wastewater Treatment 

Studies show that conventional activated sludge treatment does not effectively remove most 

PFAS, though some specialized treatments can remove a large percentage of longer chained 

compounds64,65. In fact, due to the transformation processes outlined above and the fact that most 

precursors are not tested for, researchers often found higher levels of PFAS in the effluent 

compared to the influent at WWTPs. This is especially true with PFAAs such as PFOS and 

PFOA.  

6.0 Bioaccumulation 

Unlike most other bio-accumulating compounds, PFAAs do not bind to lipids (fats), but instead 

bind to proteins66. Because of this they are found mostly in the liver and blood67, which 

complicates using measures such as Kow (a chemical’s characteristic octanol-water partition 

coefficient). Scientists often use Kow to estimate bioaccumulation, but this oil/water separation 

factor is not applicable to how PFAS behave. This means it is hard to predict the 

bioaccumulation of compounds without experimental testing. In addition, half-lives for excretion 

vary greatly between species in animals, with serum elimination time of PFOS in humans being 

as much as 10-20x as long as in rodents and monkeys68. Studies in one species are not as useful 

for informing about hazards in other organisms as with many other contaminants.   

Due to the persistence and ability to transport large distances, animals do not need to be near 

sources of PFAS to show bioaccumulation. For example, numerous studies have shown elevated 

levels of PFAS in Scandinavian marine animals, although there is no production of PFAS in 

Scandinavia34.  
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Levels of PFSAs and PFCAs in organisms are consistently highest among PFAS, and chain 

lengths of 8 and above predominate14,69. In fact, many studies have suggested that PFCAs and 

PFSAs with shorter than 7 and 6 fluorinated carbons respectively would not be considered 

bioaccumulative according to common regulatory criteria69,70 . However, some evidence exists 

that there could be exceptions to this. For example, the half-life of PFHxS (n=6) was found to be 

longer (8.5 years) than PFOS and PFOA (5.4 and 3.8 years respectively) in the human body71.  

Additionally, due to the persistence of all PFAAs, including short chain PFAAs, exposure will 

continue regardless of accumulation because bioaccumulation is not required for sustained 

internal exposure72. For this reason the Norwegian and German environmental agencies have 

proposed adding a new designation to the REACH Substances of High Concern list-mobile (M) 

and very mobile (vM). This would allow short chain compounds, which do not categorize as 

persistent, bioaccumulative, and toxic (PBT) since they are not bioaccumulative, to still be added 

to the list as persistent, mobile, and toxic (PMT)73. The theory is that PMT compounds would be 

an equivalent concern to PBT compounds, since they would also have sustained exposure. 

See the chapters on ecological and human health for more information on bioaccumulation and 

its effects on risk assessment.  

Some PFAS also have the ability to bio-magnify. In general, lesser levels of PFAS are observed 

in lower organisms with higher levels observed in animals higher on the food chain (seals, polar 

bears)74,75. Plants have been shown to take up PFAS from the soil76, an issue of concern since 

agricultural fields have the potential to be treated with PFAS contaminated biosolids from 

WWTPs. PFAS can accumulate in leaves, fruits, and roots, with levels correlating with water 

content of the plant77.   
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List of chemicals discussed 

These are the chemical acronyms and names used in this chapter.  

Acronym Chemical Name 

ADONA Ammonium 4,8-dioxa-3H-perfluorononanoate  

FTOH fluorotelomer alcohol  

FTSA Fluorotelomer sulfonate 

Gen X Hexafluoropropylene oxide dimer acid  

HFPO Hexafluoropropylene oxide  

NEtFBSA N-ethyl perflurobutanesulfonamide 

N-EtFOSE N-ethyl perfluorooctane sulfanamido ethanol  

NMeFBSE N-methyl perfluorobutane sulfonamide ethanol  

PASF perfluoralkane sulfonyl fluoride  

PFAA perfluoroalkyl acid 

PFAS per- and poly-fluorinated alkyl substances 

PFCA perfluoro-carboxylic acid 

PFHxS perfluorohexane sulfonate 

PFOA perfluorooctanoic acid 

PFOAAmS perflurorooctaneamido quaternary ammonium salt  

PFOS perfluorooctane sulfonate 

PFOSA perfluorooctanesulfonamide 

PFSA perfluoro-sulfonic acid 

POP Perfluoroacylphosphate  

 


