Reference condition estimates for the Salish Sea Model

Puget Sound Nutrient Forum
September 20, 2018

Teizeen Mohamedali, P.E.

With contributions from:
Anise Ahmed, Cristiana Figueroa-Kaminsky, John Gala, Sheelagh McCarthy and Greg Pelletier
Outline for today

• What is a reference condition and how we have defined it for SSM

• Method and analysis that went into estimating reference conditions:
 o Reasoning and basis of current approach
 o Limitations of current estimates

• Ideas for improvement
Why do we need reference condition estimates?

- To evaluate conditions in Puget Sound under reference conditions
- Need model inputs for the ‘reference’ model scenario
- To calculate oxygen depletion relative to the ‘existing’ model scenario
What is the reference condition?

• Estimates of nutrient inputs in the absence of human activities
 o No marine point source nutrients
 o Rivers set to estimated reference concentrations

• Focused on local human nutrient inputs, therefore:
 o No change in ocean boundary
 o No change in Canadian inputs

• No change in hydrodynamics
 o All freshwater flows unchanged
 o All WWTP flows unchanged (WWTP flows would, in reality, enter as freshwater in rivers)
Estimating reference river concentrations

We do not have:

- Historical water quality data from pre-development times
- A Puget Sound-wide watershed model to simulate reference conditions

We do have:

- Guidance and studies on how to estimate reference concentrations
- Ambient water quality data at major rivers for the last 10+ years
- Atmospheric deposition data
- Other studies and sources of information
EPA Guidance

Three ways to establish nutrient criteria:

1. Characterize reference reaches using best professional judgement and use these reference conditions
2. Identify 75th percentile of distribution of reference streams
3. Calculate 5th to 25th percentile of general population of streams

Estimating reference river concentrations

- **Reference conditions should vary spatially**
 - Microclimate and rainfall patterns e.g. Olympics is wetter than Cascades
 - Natural vegetation cover e.g. presence/absence of alder trees
 - Geology and stream morphology e.g. stream gradient/slope and stream energy
 - Differences in retention and assimilation of nutrients e.g. presence/absence of upstream lakes or wetlands

- **Reference conditions should vary temporally**
 - Higher concentrations in the winter due to rainfall
 - Lower concentrations in the summer due to productivity and nutrient uptake
Data used to develop estimates

NADP – national atmospheric deposition monitoring

- Data used to develop estimates
- North Cascades: 1.63 kg/d wet deposition
- Olympic National Park: 0.78 kg/d wet deposition
- Mt. Rainier: 0.89 kg/d wet deposition

Selected Olympics and Mt. Rainier stations as least impacted by human emissions
- North Cascades station is downwind and has 2x deposition of Rainier station
- Analyzed data from Olympic and Rainier stations

- Compiled data* from WY 2002-2009
- Calculated monthly and annual concentrations for inorganic nitrogen

*Data was collected by NADP: tp://nadp.slh.wisc.edu/data/ntn/
Data used to develop estimates

FMU – downstream stations at major rivers

• Compiled data* from WY 2002-2009
• Calculated percentiles for each month of the year
• Did this for the following parameters: TN, NO3+NO2, NH4, and Org N (by difference)
• Insufficient organic carbon data
• **Grouped river data into regions**

*Data was collected by Ecology’s Freshwater Monitoring Program: https://ecology.wa.gov/Research-Data/Monitoring-assessment/River-stream-monitoring/Water-quality-monitoring
Why regional groupings?

Captures some spatial variation while still having enough data to calculate percentiles

- **One river**: monthly data for 8 years = 8 samples for each month.
- **Two rivers**: 8 samples x 2 rivers = 16 samples

<table>
<thead>
<tr>
<th>Region</th>
<th>Station Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puget Sound</td>
<td></td>
</tr>
<tr>
<td>South Sound</td>
<td>Deschutes River at E St. Bridge</td>
</tr>
<tr>
<td></td>
<td>Nisqually River at Nisqually</td>
</tr>
<tr>
<td>Commencement Bay</td>
<td>Puyallup River at Meridian St.</td>
</tr>
<tr>
<td>Puget Main</td>
<td>Cedar River at Logan St./Renton</td>
</tr>
<tr>
<td>Elliott Bay</td>
<td>Green River at Tukwila</td>
</tr>
<tr>
<td>Whidbey</td>
<td>Skagit River near Mt. Vernon</td>
</tr>
<tr>
<td></td>
<td>Stillaguamish River near Silvana</td>
</tr>
<tr>
<td></td>
<td>Snohomish River at Snohomish</td>
</tr>
<tr>
<td>Hood Canal</td>
<td>Skokomish River near Potlatch</td>
</tr>
<tr>
<td></td>
<td>Duckabush River near Brinnon</td>
</tr>
<tr>
<td>Strait of Georgia/Juan de Fuca</td>
<td>Samish River near Burlington</td>
</tr>
<tr>
<td>Strait of Georgia(USA)</td>
<td>Nooksack River at Brennan</td>
</tr>
<tr>
<td>Strait of Juan de Fuca(USA)</td>
<td>Elwha River near Port Angeles</td>
</tr>
</tbody>
</table>
Estimating reference river DIN concentrations

Summer: Breakdown in summer nutrient uptake in more developed watersheds
Estimating reference river DIN concentrations

Winter:
• Stream 10th percentile conc > rainfall conc
• Dilution in rainfall conc due to more rain
Estimating reference river DIN concentrations

Summer:
• Higher nutrient uptake
• Stream concentrations < rainfall concentrations
Current approach: DIN reference concentrations

DIN concentrations in the Puyallup River

Reference nutrient concentration
Summary: estimating reference river concentrations

- Reference conditions should vary spatially
- Reference conditions should vary seasonally

Cascade watersheds: minimum of either:
1. Monthly 10th percentile concentrations from ambient data
2. Annual flow-weighted atmospheric concentration

Olympics watersheds: minimum of either:
1. Monthly 50th percentile concentrations from ambient data (area has less human impact)
2. Annual flow-weighted atmospheric concentration
Reference concentrations for other nutrients

Dissolved/Particulate organic nitrogen (DON/PON):

• Calculated Total Organic Nitrogen reference concentrations (10th or 50th percentile), where $\text{TON} = \text{TPN} - \text{DIN}$

• Assumed proportion of DON and PON is the same under existing and reference conditions

Dissolved/Particulate organic carbon (DOC/POC):

• Insufficient monitoring data to calculate percentiles

• Calculated monthly 10th or 50th percentiles of DOC and POC concentrations existing model time-series, which were calculated via multiple linear regression (discussed in May nutrient forum)
Most WWTP flows would still reach Puget Sound as freshwater flow even if WWTPs were not there.

- WWTP flow discharge locations unchanged – to preserve model hydrodynamics.
- WWTP effluent concentrations set to equal the monthly reference concentrations of the regions within which they are located for all nutrients.
Regional reference concentrations: DIN

Annual avg. reference regional DIN concentrations

DIN (NH₄ + NO₃), mg/L

Regions

SOG, Windre, Puget Main, Cedar, Sinclair - Dyes, Elliot Bay, Green/Duwamish, Commencement Bay, South Sound, Hood Canal, Admiralty, S.JF, Elwha, Skagit, Stilly, Snohomish, Puyallup, Deschutes, Nisqually, Skokomish, Duckabush, Elwha.
Regional reference plots: DIN (NH4+NO3)

NOTE: these are year-long time series plots, time units are in hours

- Skagit R is in the ‘Whidbey’ region
- When existing < reference, we use existing.
- Whidbey regional reference concentrations are > then existing Skagit R conc, so we take whichever is lower
Regional reference plots: DIN (NH4+NO3)

NOTE: these are year-long time series plots, time units are in hours

Olympic watersheds: reference is approximately equal to existing (due to 50th percentile)
Regional reference plots: Org-N

NOTE: these area annual time-series, time units are in hours
Regional reference plots: DOC

NOTE: these are year-long time series plots, time units are in hours

- Where we do not have DOC data, existing concentrations are set to a constant value.
- 10th percentile of a constant value = the same value!

- [Graphs of DOC concentrations for different regions with time series plots showing hourly variations.]

- [Key plots for regions such as Skagit R, Looksack R, Puyallup R, Green R, Miller Creek, etc., showing DOC concentrations over time.]
Example: Chambers Creek WWTP

NOTE: these are year-long time series plots, time units are in hours
Monthly DIN loads to Puget Sound in 2008

Graph showing the average monthly DIN load (kg/day) from January to December for WWTP Existing, Rivers Existing, and Reference categories.
Monthly TON loads to Puget Sound in 2008

- WWTP Existing
- Rivers Existing
- Reference
Monthly TOC loads to Puget Sound in 2008

Average monthly TOC load (kg/day)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

- WWTP Existing
- Rivers Existing
- Reference
Limitations of reference estimates

1. Existing reference estimates still contain anthropogenic signal
 - Annual average atmospheric data includes anthropogenic nitrogen emissions
 - Watersheds with more development have a higher reference concentration

2. Regional aggregation of rivers is a simplification
 - Averages out spatial differences between rivers grouped in the same region
 - Still better than a single sound-wide reference condition

3. Insufficient organic carbon data to calculate true percentiles
 - We are using regression-based estimates to calculate percentiles, some values are constant

4. Flows remain unchanged: cannot evaluate a true reference condition w/out hydro-modifications
Is this reasonable?

- We did a meta-analysis of a number of other sources of information...
- Developed several lines of reasoning
Is this reasonable?

- Are our estimates are within the range of other studies?
- Yes, our estimates generally coincide with other lines of evidence

- Gives us confidence that despite limitations, we are in the right ball park
Ideas for Improvement

In progress:

- Organic carbon monitoring at freshwater ambient stations
- Analyzing more recent data through 2017 - existing approach used data from WY 2002-2009
- Analyzing water quality data collected at ‘reference sites’ as defined by other monitoring programs, e.g.:
 - Ecology’s Freshwater Monitoring Unit has a few ‘reference’ stream sites
 - Ecology’s Watershed Health Monitoring unit has identified ‘sentinel’ sites

Not yet begun:

- Continuous nitrogen monitoring at a few major rivers – higher spatial resolution data
- Use atmospheric deposition modeling output to refine ‘background’ atmospheric contributions
- Developing river-specific reference conditions i.e. no regional aggregation where data is sufficient
- **Other – your suggestions and feedback**

A detailed description of the reference estimation methods is available in the following two publications:
