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Greg Pelletier, PE.
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U.S. Environmental Protection Agency
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Taeyun Kim, Ph.D.
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Taiping Wang, Ph.D.
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Salish Sea Model:
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Contributors — thank you!

Data, Monitoring Tools, and Observations

Ecology’s Marine Monitoring Unit — data received from Mya Keyzers, Julia Bos, Skip Albertson,
Carol Maloy, Christopher Krembs http://www.ecy.wa.gov/programs/eap/mar_wat/index.html

Ecology’s Freshwater Monitoring Unit — Marcus Von Prause, Dave Hallock, Bill Ward
http://www.ecy.wa.gov/programs/eap/fw_riv/index.html

Fisheries and Oceans Canada http://www.dfo-mpo.gc.ca/index-eng.htm

Padilla Bay National Estuarine Research Reserve System — data downloaded online, with
assistance from Nicole Burnett and Jude Apple http://cdmo.baruch.sc.edu/

King County — data from Stephanie Jaeger and Kim Stark
http://green2.kingcounty.gov/marine/Monitoring/Offshore

University of Washington — UW PRISM cruise data in collaboration with NOAA, data from
Simone Alin (NOAA) and Jan Newton (UW), Parker MacCready provided Matlab scripts
http://www.prism.washington.edu/home

Puget Sound Ecosystem Monitoring Program
http://www.ecy.wa.gov/PROGRAMS/WQ/psmonitoring/index.html

Many staff members of the wastewater treatment plants (WWTPs), particular in South and
Central Puget Sound — provided data and assistance in collecting samples as part of the South
Puget Sound Dissolved Oxygen Study for their facilities, which are the basis of some of the
nutrient load estimates used in the model.

Ecology staff collected information under the separate South Puget Sound Dissolved Oxygen
Study that was used as a basis for load analyses in the Salish Sea Model:

* Karen Burgess and Greg Zentner managed communications with the WWTPs through the
permit writers (Mahbub Alam, Mike Dawda, Dave Dougherty, Alison Evans, Mark Henley,
Tonya Lane), and Marc Heffner provided input regarding the Simpson industrial discharge.

* Chuck Hoffman analyzed and performed WWTP regressions.

* Ryan McéEliece, Chris Moore, and Brandon Slone conducted all freshwater monitoring,
including coordinating with WWTP staff for composite sample collection, in South and
Central Puget Sound.

* Steve Golding helped develop the South and Central Puget Sound WWTP monitoring
program.

* Dave Hallock and Bill Ward coordinated supplemental freshwater monitoring in South and
Central Puget Sound.

Peer Reviewers

Simone Alin - Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric
Administration

Bob Ambrose, Ben Cope - U.S. Environmental Protection Agency

Stephanie Jaeger - Department of Natural Resources and Parks, Water and Land Resources Division,
King County

Christopher Krembs, Tom Gries, Will Hobbs, Dustin Bilhimer - Washington Department of Ecology
Parker MacCready - University of Washington

Brian Rappoli - Ocean and Coastal Acidification and Coral Reef Protection Program, U.S. Environmental
Protection Agency

Randy Shuman - King County

Samantha Siedlecki - Joint Institute for the Study of the Atmosphere and Ocean, University of
Washington

Funding & In-kind Contributions

Framework Development
Pacific Northwest National Laboratory
Washington State Department of Ecology

United States Environmental Protection Agency

Individual Project Applications

National Estuarine Program

Nature Conservancy

National Oceanic and Atmospheric Administration
NW Straits Commission

Skagit River System Cooperative

Skagit Watershed Council

Tulalip Tribe

U.S. Army Corps of Engineers

Additional Support
Pacific Northwest National Laboratory (PIC) program: http://pic.pnnl.gov/

NW Regional Modeling Consortium http://www.atmos.washington.edu/cliff/consortium.html
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Salish Sea Model: Whatisit? Why is it needed?

 SSMis a 3-D biogeochemical diagnostic tool
for predicting responses to key ecosystem
parameters due to discrete changes.

* Itis needed to support in the assessment of
impacts to our estuarine system. It is the
backbone tool that will be used in the Puget
Sound Nutrient Reduction Strategy.

24 Peer reviewed papers and technical reports




Spatial Scale: Model has evolved--larger domain with finer horizontal grids focusing on
Puget Sound. Ten vertical layers.
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SSM: Approximating the biology,
chemistry and physics of the Salish Sea

Variable
nutrientinputs

C
=
=
]
(]
—
Q
]
2

Particle flux

o
O

Diffusion, resuspension,
bioturbation, pore water
processes

Sediment

K%
v
Q
c
Q
oo

©

B

Sediment

Deep burial

Combined Bathymetry and Topography of the
Puget Lowland,_Washington State

Finlayson 2005 Topobathy DEM

ocean.washington.g

- e

o e et

By
Duvid Finley sos
This truep and Be Sigitl clevation suodel esed 1o build X
are avadible fres of cluge o T o e Yo o o
- ' o b 06



http://www.ocean.washington.edu/data/pugetsound/psdem2005.html

Temporal Scale: Annual Simulations, Hourly output
SSM simulations presented today will reference three separate years

Dissolved Oxygen

Region 2004 |[AN@0050 2006 [N20070 2008 2009 2010 BN20NY 2012 [N2MENN 2014 2014
n Juan il warnonmey il | nimu m i

Sl |
im0 Wuminn 1 i « Relative to previous vears
N°’"‘S°‘"‘"| il 11l wii el P years,

= | - l 11 Hood Canal DO conditions
HoodCanall i III ' i improved.

e Historic mean river flows
exceeded in Spring.

I
entral 11
- 11
[

W
[ | 1
South Sound i1 I 1 | i * In September and October,

the “Blob” moved in.

Source: MWClI, Department of Ecology, Christopher Krembs, Julia Bos, Skip Albertson, Mya Keyzers, Laura Hermanson and Carol Maloy

PSEMP 2014 Report

2006 2008

“In September 2006, High rates of shellfish larvae die-
thousands of dead fish offs reported by Hood Canal
washed up on shore in Hood commercial shellfish growers
Canal”

http://www.seattletimes.com/seattle-news/fish-kill-risk- Personal communication, Bill Dewey

in-hood-canal/



Comparable approach used to study Chesapeake Bay

JOURNAL OF

4 J AV R /A THE AMERICAN WATER

RESOURCES ASSOCIATION

Explore this journal = CO m p a ra b I e m O d e I

JAWRA

Featured Collection: Chesapeake Bay Total Maximum Daily Load

Development and Application - perfo rmance

Twenty-One-Year Simulation of

Chesapeake Bay Water Quality Using 2,
the CE-QUAL-ICM Eutrophication View issue TOC
Model’ e

Pages 1119-1133

Carl F. Cerco, Mark R. Noel

First published: 4 September 2013  Full publication history

Mean Difference Between Model and Observations
DO (mg/L) Chlorophyll (png/L)
Range of annual statistics

-1.56 to 0.35 -0.31t0 0.82
Chesapeake Bay -0.522 t0 0.775 0.32to 1.55







An Overview of the Salish Sea Model:

(A tool for Water Quality and Ecosystem Management )
Hydrodynamics, Biogeochemistry, & Sediments ...

Model Framework and Skill

Tarang Khangaonkar, Wen Long, Laura Bianucci, Wenwei Xu, Adi Nugraha
Pacific Northwest National Laboratory (PNNL)

Pacific Northwest
NATIOMNAL LABORATORY

United States
Environmental Protection
Agency

Proudly Operated by Battelle Since 1965



Salish Sea Model (2017)

» Expanded Salish Sea Model

® The NW Straits
@ Vancouver Island
@ Continental shelf

B 18 Major Rivers and 145 fresh water & WWTP point

sources

B Additional Rivers (Pacific Ocean)
@ Columbia / Willamette Rivers
® Chehalis River
@ Willapa River

M Tidal forcing

B Meteorology
® UW /WRF Model

B Ocean boundary conditions
® Monitoring data or WOA
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Ibration —Tides, S, & T

Pacific Northwest
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Tides — Greenbank, Whidbey Basin
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Calibration: Velocity o

Pacific Northwest
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Pacific Northwest
Surface Currents

Proudly Operated by Batfelle Since 1965

Vancouver Island, B,C, Canada

Surface Outflow "2
-+ Haro Strait ~—""

e

Fraser River Eddy

Washington State, U.S.

Juan De Fuca Eddy



Tidal Currents — San Juan Islands "7‘/
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Circulation in the Salish Sea

Proudly Operated by Batfelle Since 1965

0 SJF SJF ADM ADM HNV/PSB
P — 130k +— «—, 15k<—18k<— — i —
- 100k LN i J 30k
T 50 b : /__18k R : Puget Sound
3 : I 15k 0 W aae S ! Central Basin
o p LA T} 8
g -100 F AL
E 150 | >,/ 1
- y - I A\
T Ll Inflow/Outflow"/
2 200 A Haro Strait ! Hood Canal
g L/ Inflow/Outflow
= 950 L Rosario Strait and San Inflow/Outflow to South
W g Juan Island Channels Saratoga Passage Puget Sound
300 f  Strait of JuanDeFuca =,
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Distance along the transect, m
SJF = Strait of Juan De Fuca HNV/PSB = Hansville, Puget Sound
ADM = Admiralty Inlet EP/CP = East Passage / Colvos Passage
HARO = Haro Strait TN = Tacoma Narrows
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Simulated Surface Constituents (2006)
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The model can predict ocean acidification

Model
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2200 Surface DIC
g
S 2000
£
-}
O 1800}
&)
160Q ' ' ' '
Jan Apr Jul Oct Jan
2200 Bottom DIC
_\@ 2100 *
% w‘%
O 2000}
&)
1900

Jan

Apr  Jul  Oct Jan

TA umol/kg

TA umol/kg

2200; Surface Alkalinity
2000

1800/

160\(J)an Abr Jﬁl O.ct Jén
22001 Bottom Alkalinity
2100} « oA
2000

190‘cl)an Abr Jﬂl O.ct Jén

8.31
8.1
7.97
T 7.7}

(total)

7.5
7.3

‘Jan

8.31
8.1
7.91

(total)

7.7
o
7.5
7.3

‘Jan

Surface pH
*

T

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Batfelle Since 1965

Jul

Abr

Bottom pH

Oct Jan

Apr  Jul

Oct Jan




T

Pacific Northwest
Representative Model Error Statistics

Proudly Operated by Batfelle Since 1965

» Tides Hydrodynamics
> Nitrate
-0.03 0.29 0.35 7.8% ME
| ug/L (uM/L)

» Salinity 0.99 6.53
> Algae (Chi - )
0.35 1.2

RMSE
ME (o)

0.82 4.37

» Temperature

0.32 0.83

» Phosphate

-0.69 0.94
» D > P H

O
ME RMSE
Water Quality (Mg/L)

0.35 0.99 0.12 0.21




Salish Sea Model summary

T

Pacific Northwest
NATIONAL LABORATORY

» Hydrodynamic Model of Salish Sea
B http://salish-sea.pnnl.gov/

» Expanded Domain Improvement

m Validation of the Circulation in Embracing Sills concepts
proposed by Ebbesmeyer and Barnes (1980)

o Nearly 2/3™ of surface outflow is refluxed back to Puget Sound
near the Admiralty Inlet sill

» Biogeochemical Model of Salish Sea

® Nutrients, phytoplankton (two algae groups) and carbon
B Sediment diagenesis

® Carbonate chemistry — alkalinity and pH
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[Khangaonkar & Wang (2013) — Appl. Ocean Research]

[Khangaonkar et al. (2011) — Estuary Coast and Shelf
Science]

[Yang and Khangaonkar. (2010) — Ocean Dynamics]

[Khangaonkar et al. (2017) — Ocean Modelling]

[Khangaonkar et al. (2016) - Northwest Science]
[Kim and Khangaonkar. (2011) — Environmental
Modelling Software |

[Khangaonkar et al. (2012) — Ocean Dynamics]

[Bianucci et al. (2017 submitted)]

Fisheries and Oceans
l*. Canada

e USGS

cience for a changing world
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Residence Times in Salish Sea

How long a mass of water stays at a certain location?

Longer residence times promotes :
a. Buildup of pollutant concentrations

Increased productivity and depletion of nutrients

b
c. Oxidation of ammonia to nitrate which depletes oxygen
d

Decomposition of organic carbon (dead algae) by
heterotrophic bacteria which deplete oxygen

e. hot spots for biogeochemical stressors

\7/ Anise Ahmed

Pac|f|c DEFARTMENT OF
Northwest ECOLOGY
NATIONAL State of Washingtaon

LABORATORY
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Residence Time index for Central Basin

(Courtesy, Skip Albertson, 2015 PSEMP report)
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NOAA OAR Special Report

Washington Shellfish Institute:
Blue Ribbon Panel on Ocean Acidification, 2012

Washington Shellfish Initiative
Blue Ribbon Panel on Ocean Acidification

Scientific Summary of Ocean Acidification
in Washington State Marine Waters

“What is not known is the magnitude of the effect that the
anthropogenic nitrogen inputs have on pH or aragonite
saturation levels.

Resolving this issue is not trivial; it will require new knowledge
of residence times, exBort production (the amount of
particulate organic carbon that sinks out of the euphotic zone
and is remineralized at depth), and oceanic boundary
condi)tions (baseline pH and carbon species signals from the
coast).”

“Basins with strong stratification and long residence times
should be the most susceptible to land-based and human
sourced inputs of nitrogen™. s

Richard A. Feely NOAA Pacific Marine Environmental Laboratory

Terrie Klinger  University of Washington School of Marine & Environmental Affairs
Jan A.Newton  University of Washington Applied Physics Laboratory
Meg Chadsey  Washington Sea Grant

Advance Copy - November 2012

https://pmel.noaa.gov/co2/files/wa shellfish initiative blue ribbon panel oa 11-27-2012.pdf



https://pmel.noaa.gov/co2/files/wa_shellfish_initiative_blue_ribbon_panel_oa_11-27-2012.pdf
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Residence times in different basins, days

Salish Sea

Annual average flows, cms

Fraser 2179 2940

Skagit 470 574

Stillaguamish 274 320
2014

alish Sea 160 54
outh Sound 289 208
outh & Central * 249 165
hidbey Basin 258 154
ood Canal 261 181
outh & East Admiralt 249 158

* South of Edmonds
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Conclusions

1. Longer residence times occur in remote inlets and “trapped” basins
2. In general, longer residence times occur for surface waters compared to bottom waters

3. Longer residence times occur with poor estuarine circulation from low freshwater
flows

4. We can now use the Salish Sea model as tool to quantify residence times for any
portion of the model domain or year.

5. Residence time maps show us areas that are susceptible to biogeochemical stressors,
and can be made available to the scientific community






Puget Sound Nutrient Loading
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Nutrient parameters

* Model includes a full suite of water quality parameters,
including:

* nitrogen
* phosphorus
* carbon

* Both nitrogen and carbon parameters affect oxygen levels
and acidification parameters and were both modified in the
estimate of reference conditions

* Focus on this presentation is on inorganic nitrogen —
limiting nutrient in growing season

* But, model results also show that organic carbon from
human sources also plays a role

Parameter Name

Parameter
Abbreviation

Measured Parameters

Nitrate + Nitrite NO23N
Ammonium NH4AN
Total Persulfate Nitrogen TPN
Dissolved Total Persulfate Nitrogen DTPN
Ortho-Phosphate opP
Total Phosphorus TP
Dissolved Total Phosphorus DTP
Total Organic Carbon TocC
Dissolved Organic Carbon poc’
Calculated Parameters

Dissolved Inorganic Nitrogen DIN
Particulate Organic Nitrogen PON
Dissolved Organic Nitrogen DON
Particulate Organic Phosphorus POP
Dissolved Organic Phosphorus DOP
Particulate Organic Carbon POC




Excess nutrients are a problem
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loading
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Rivers
Includes all upstream sources that

drain into rivers, and are transformed
by stream dynamics, before entering

Puget Sound at their mouths

\

J

-

Sources included implicitly:

* near-shore septic systems

* direct marine discharge of
groundwater

Sources not included:
* net pens

* vessel discharges

\° Combined sewer outflows )

Sources of nutrients

r

Atmospheric Deposition

Deposition of atmospheric nutrients (from
natural sources plus emissions) onto

L watersheds and directly onto marine waters |

Net Ocean Exchange

and Puget Sound get exchanged
at the Strait of Juan de Fuca and

Admiralty Inlet
\_

Nutrients from the Pacific Ocean

~

J

WWTPs + other point sources
Human wastewater and industrial point
sources with outfalls in marine waters




Nitfrogen concentrations
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Nitrogen Concentration (mg/L)

j=t
o
(=]
f=

1.00

0.10

0.01

( )
' Nitrogen concentrations in ocean water are

not the highest, but because of the amount of
Pacific Ocean water entering Puget Sound, the

Pacific Ocean contributes the largest

nitrogen load to the sound.
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Nitrogen from point sources

o All facilities that have outfalls in marine waters

* Model includes discharges from:
e 78 US wastewater facilities
e 10 US industrial facilities

* 9 Canadian wastewater facilities

* Largest DIN loads coincide with the largest population

centers
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Nitrogen from nonpoint sources

* Model needs nutrients entering the model domain from all

watersheds/river/nonpoint sources

e Estimates shown are at the mouth of each river and

stream and include all upstream sources:
* Stormwater runoff
* Livestock manure
 Agricultural and urban fertilizer application
* Natural sources
* Watershed septic systems
* Point sources with outfalls in rivers/streams

¢ Groundwater baseflow in streams

* Further source tracking studies may be necessary to identify

upstream nutrient reduction strategies
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Seasonality of river and WWTP nitrogen loading

Monthly DIN loads entering Puget Sound south of Admiralty Inlet

90,000
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80,000
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20%
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DIN Load (kg/d)

Inter-annual variability of river loading
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Nutrient loading scenarios

Reference
condition
(no people)

natural
sources

Published in Mohamedali et. al. (2011),
updated in Pelletier et. al. (2017, Appendix B),
estimates may be refined further in 2017-2018

Current loading

point sources
(WWTPs)

Reference Condition =
nutrient loading in the absence of
regional anthropogenic nutrient

non-point
sources
(rivers)

Published in
Mohamedaili et. al. (2011)

sources

* Nno change in ocean inputs
* no change in Canadian inputs



Reference condition point and nonpoint source loading

Reference vs. human point and nonpoint source DIN loads to different regions in Puget Sound
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Nutrient loading scenarios

Refergr]ce Future loading:
condition more people,
(no people) Current loading different climate

natural
sources
Published in Mohamedali et. al. (2011), Published in
updated in Pelletier et. al. (2017, Appendix B), Mohamedali et. al. (2011)

might be refined further in 2017-2018

Published in Roberts et. al. (2012),
might be updated



Future nutrient loading

35,000
I. Climate Change @2010s ©2060s j Higher winter L
* Changes in precipitation 30,000 flows
* Changes to river hydrology Earlier
T 25000 snowmelt
* Change in timing of freshwater

flows and nitrogen loads to
Puget Sound

20,000
15,000
Higher spring
flows
10,000
e s
Skagit River
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Streamflow (cfs)

2. Population Growth



I. Climate Change
* Changes in precipitation
* Changes to river hydrology

* Change in timing of freshwater
flows and nitrogen loads to
Puget Sound

2. Population Growth

* Urbanization & development

Less forested/natural lands

Agriculture may or may not
increase

More people = more
wastewater

Possible technology changes to
wastewater treatment

Future nutrient loading

2060 )
Landcover <%

2000
Landcover

OSU Alternative Futures
Project (Bolte and Vaché,
2010)

Forested
144 kg/km?2/yr

Industrial/
Commercial
95 kg/km?/yr

Residential
308 kg/km?2/yr

Puget Sound Toxics Assessment
(Herrera, 2011)



Future point and nonpoint source loading

Annual average DIN loading estimates from point and nonpoint
sources into Puget Sound (south of Admiralty Inlet)

100,000
90,000
80,000
70,000
60,000
50,000
40,000

30,000

Annual average DIN load (kg/d)

20,000
10,000

0

<
~60%

increase

by 2070 )

E Point Sources (WWTPs)

O Nonpoint Sources (rivers)

2006 Baseline 2020's 2040's

2070's

Key assumptions:

OFM 2012 ‘medium’ population
projections

No change in WWTP treatment
processes/technologies or per capita
wastewater flow, no new facilities

Future hydrology from UW Climate
Impacts Group VIC model based on
downscaled A/B emissions scenarios

Future nitrogen nonpoint source
concentrations are only a function of
empirical relationships to land use

Future land use based on a ‘status quo’
of current land use trends in the region

Published in Roberts et. al. (2012), might be
updated



‘Nitrogen in Puget Sound’ Story Map: (coming soon!

Nitrogen in Puget Sound A story map of nitrogen in Puget Sound, created by the Washington State Department of Ecology

Excess Nitrogen Sources of Nitrogen Rivers and WWTP Sources Monitoring Nitrogen River Trends

Puget Sound: an overvie Nitrogen in Puget Sound A story map of nitrogen in Puget Sound, created by the Washington State Department of Ecology

This story map, developed by scientists at the Was|
Department of Ecology, shares the story of what
nitrogen in Puget Sound, related monitoring effort]
analysis, as well as gaps in our current understand}

Sources of Nitrogen Rivers and WWTP Sources Monitoring Nitrogen River Trends

Nitrogen in Puget Sound A story map of nitrogen in Puget Sound, created by the Washington State Department of Ecology

Puget Sound is the second largest estuary in the U|
part of the Salish Sea. It is a complex fjord with ma
basins and waterways, and is connected to the Pag
Admiralty Inlet and the Strait of Juan de Fuca. Pug
seasonal freshwater flows from the Olympic and
watersheds. The combination of Pacific Ocean inp:
flows, tides and physical bathymetry, governs circ
within Puget Sound.

Excess nitrogen

Overview Excess Nitrogen Sources of Nitrogen Rivers and WWTP Sources Mor trogen | River Trends

Algal Blooms

Algal blooms are shown in this photo taken from an

airplane just north of Elliott Bay. Algal blooms are a

Nitrogen Monitoring

common feature in Puget Sound, where we typically
Puget Sound is very sensitive to changes in the Pag
same time, it is also sensitive to the changes that &
the watersheds that surround it due to human act|
landscape and human wastewater discharges to

spring bloom and a summer bloom when phytoplank|

in the water become productive. Excess nitrogen can Vahcouyer

result in a higher frequency, and duration of algal blof Ecology has several monitoring programs in and around

in Puget Sound. Puget Sound that monitor for a variety of water quality
Puget Sound is an attractive place to live, work and
therefore home to a growing population. The Pug;

a vital food source and the foundation of the regiol

parameters, including nitrogen. Ambient monitoring

Algae growth also depends on factors other than

involves repeated sampling at the same stations over a
nitrogen which can enhance or inhibit algae growth a P £0e

resource economy. .
the extent to which algae decomposition leads decre long period of time. The data from these efforts enable
Understanding nitrogen loading to Puget Sound is J»\/’\
I 2 i e,
of studying Puget Sound water quality issues and LGSR Us to observe long-term trends in water quality 3 r\\ D

Nitrogen loading is becoming an issue as the regio| f
local stressors from population growth, developmd J
in combination with the global stressors of climatefitd
ocean acidification.

o
gy
i

conditions. Ecology has a few focused nitrogen

Victonn

/{»
Y
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2

Some algal blooms are called harmful algal blooms

y
X

monitoring efforts designed to answer a specific question

(HABs) because they can be toxic and can affect humg
health either directly by swimming in the water, or

or explore data or water quality conditions in a specific

This map was created by Paula Cracknell, Sheelagl indirectly by consuming shellfish that are grown in w3

Teizeen Mohamedali.

location in more detail.

g

-
)

which has been exposed to a harmful algae. While we]

know that nitrogen contributes to algal blooms, we dd

\t/ig)
\Eé :
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not know if nitrogen is also linked to harmful algal This map shows Ecology's freshwater and marine

A
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Cascadia blooms in marine waters. monitoring stations within the Puget Sound. \ )
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Summary

Dynamic variation in time and space is important
o Inter-annual variability
o Residence time matters: higher flows = higher loads # higher impact

o Location matters: largest loads do not necessarily coincide with largest impact

o Need to consider interaction between processes at different temporal and spatial scales

Pacific Ocean:

o Future conditions are highly uncertain and may change: incoming temperature, oxygen and nutrient levels,

timing and duration of upwelling events

o While highly influential, we are limited in our ability to manage these changes

Extent of human influence:
o Future nutrient loading will likely exacerbate local human impacts

o Existing and reference condition model inputs can be used to run model scenarios in order to estimate the
impact of human nutrients on Puget Sound, something we have not been able to do before — Greg’s
presentation (next)






Salish Sea Model

Current model results and
the response to regional
anthropogenic nutrient
sources

Greg Pelletier
Department of Ecology

Puget Sound Nutrient Dialogue, 19 Jul 2017




Fraction of May-Sep DIN, chlorophyll a, and non-algal
organic C due to anthropogenic nutrient loads, surface 20 m
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Cumulative days with DO less than 5 mg/| during 2006
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Cumulative days with DO depletion > 0.2 mg/I during 2006
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Changes in pH and Q__._ due to anthropogenic sources

arag

Regional anthropogenic Global anthropogenic
nutrient sources (this study) sources (Feely et al. 2010)

Range of monthly average Difference between cruise
differences between historical observations (February and
(2008) and estimated pre- August, 2008) and estimated
industrial pre-industrial

pH (surface 20 m) -0.07 to 0.06 -0.11 to 0.03

pH (bottom) -0.10 to 0.05 -0.06 to 0.00

Qg (surface 20 m) -0.06 t0 0.19 -0.33 to -0.09

Q,,q (bottom) -0.12t0 0.17 -0.16 to -0.02



Annual average change in pH due to regional anthropogenic nutrient sources
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Change in pH due to regional atmospheric CO, increase from 400 to 450 ppm

Surface 20 m Bottom layer
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Annual average change in 2, due to regional anthropogenic nutrient sources
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Change in ., due to regional atmospheric CO, increase from 400 to 450 ppm
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Conclusions

* Regional anthropogenic nutrient sources significantly
deplete DO

* Regional anthropogenic nutrient sources significantly

decrease pH and Q, ., especially in the deep layer

* pHand Q,,, are sensitive to expected increases in local
atmospheric CO,, especially in the surface 20 m






A view of Mt Rainier from Tolmie State Park, Photo Courtesy: Andrew Diaz

Salish Sea Model
Next Steps:

Updated reference conditions

Organic N, carbon (before it was
only DIN) . May update again after
further review/analysis

Refining nutrient loading inputs for
refined model grid — finer
delineations

Scenario Runs

Reference condition & future
scenarios to be run on expanded,

refined grid

Model Improvements



Salish Sea Model Journal Publications & Technical Reports
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