Representing nutrient dynamics in an ecosystem model of Puget Sound

Raphael Girardin & Michael Schmidt, Long Live the Kings

Isaac Kaplan & Chris Harvey, NOAA NWFSC

Beth Fulton and Bec Gorton, CSIRO-Australia
As part of the Salish Sea Marine Survival Project, we are building an ecosystem model to examine factors that are individually or cumulatively responsible for recent increases in salmon mortality:

- Changes in bottom-up processes? (nutrients, productivity, climate)
- Changes in top-down processes? (predation)
- Changes in other food web processes? (competition)
- Changes in other drivers? (contaminants, fishing, habitat)
- Differences among basins?
We are developing this ecosystem model using the Atlantis software

- Spatially explicit model domain
- Links physics, chemistry, biology, & management
- Flexibility with ecological processes
- Dozens of Atlantis models developed worldwide, mostly for comparing fisheries management options in the context of environmental variability
- A “sandbox” for strategic model experiments
- Downside: complex, data intensive, and model run times are slow

[Diagram showing the simulation cycle with various components like biophysical, industry, implementation, monitoring, assessment, management, and outcomes.]
Example: ecosystem services of corals around Guam

- 55 spatial polygons
- 42 functional groups, from bacteria up to sea turtles
- Key drivers of coral reef system dynamics:
 - Global change (↑ temperature, ↓ pH)
 - Nutrient/sediment loading
 - Fishing
- Scenarios:
 - IPCC high CO₂-emission scenario to 2050
 - Increased point and non-point nutrients, sediment
 - Increased fishing

Weijerman et al. 2015, PLOS ONE 10:e0144165
Example: ecosystem services of corals around Guam

- Climate change (which causes coral bleaching) becomes increasingly dominant in 2020s
- Cutting nutrients and sediment (LBSP; dashed lines) helps, but can’t stave off climate effects
- Fish production declines too, though sustained somewhat by increases in algal production

Weijerman et al. 2015, PLOS ONE 10:e0144165
Puget Sound Atlantis model

• 89 polygons, up to 6 depth layers

• ~75 functional groups, from bacteria to whales; 20 different salmon stocks

• Circulation derived from a fine-scale grid-based ROMS model (Parker MacCready, UW)

• Boundary boxes in north and west allow for migratory animals to enter/exit through straits

• Covers marine waters only (below estuarine deltas), but we can simulate riverine inputs of nutrients, sediments, etc.
3-dimensional structure of Atlantis

Daily/12h oceanographic fluxes (water, heat, salinity) into, out of each box are controlled by a circulation model.

Atlantis dynamic structure

Human activities submodel

Food web

Habitat

Hydrographic submodel

Climate, oceanography

Biogeochemistry

Sutherland et al. (2011)

Nutrient dynamics in Atlantis

River input (time series forcing)

Atmospheric deposition

Burial

Settling

Bioirrigation, Bioturbation

Resuspension

Other point source input (time series forcing)

Diffusion

Advection (hydrodynamic model forcing)

Boundary Conditions

Food web cycling

Nitrogen cycling in the food web of the Puget Sound Atlantis Model

- Sediments
- Water column
- River
- Atmospheric
- Upwelling

Particulate detritus → Bacteria → DIN → Phytoplankton (large and small)

DIN → Seagrass + Macroalgae → Particulate detritus → Bacteria

River Atmospheric Upwelling forcing
Nitrogen cycling in the food web of the Puget Sound Atlantis Model

- **FISH**
 - Mesozooplankton (Copepods)
 - Microzooplankton
 - Phyttoplankton (large and small)
 - Macrozooplankton (Euphausids, large copepods)

Water column
- Particulate detritus
- Bacteria
- DIN

River
- Atmospheric Upwelling forcing
- Sediments
- Particulate detritus
- Bacteria
- DIN
- Seagrass + Macroalgae

Deposit feeder
- Benthos (several functional groups)

Filter feeder
- Phytoplankton (large and small)

Sediments
- Nitrogen cycling in the food web of the Puget Sound

Diagram labels
- Atlantis Model
Nitrogen cycling in the food web of the Puget Sound Atlantis Model

Water column

River
Atmospheric
Upwelling
forcing

Sediments

Particulate detritus
Bacteria
DIN

Phytoplankton (large and small)

Macrozooplankton (Euphausids, large copepods...)
Mesozooplankton (Copepods)
Microzooplankton

Filter feeder
Deposit feeder
Benthos (several functional groups)

Seagrass + Macroalgae

Particulate detritus
DIN
Bacteria

Particulate detritus
DIN
Bacteria
Nitrogen cycling in the food web of the Puget Sound Atlantis Model

Water column

River
Atmospheric
Upwelling
forcing

Particulate detritus
Bacteria
DIN

Particulate detritus
Bacteria
DIN

Seagrass + Macrolalge

Deposit feeder
Benthos (several functional groups)

Macrozooplankton (Euphausids, large copepods...)
Mesozooplankton (Copepods)
Microzooplankton

Phytoplankton (large and small)

Gelatinous zooplankton + Jellyfish
Microzooplankton (Noctiluca)

Filter feeder

Particulate detritus
Bacteria
DIN

River
Atmospheric
Upwelling
forcing

Sediments
Nutrient input forcing for Puget Sound

River mouth (green) and other point sources (red) (Mohamedali et al., 2011)

Historical nutrient loading 1999-2008 (Mohamedali et al., 2011)

Puget Sound Atlantis model

• Presently we are still in phase of parameter development and will soon begin calibrating model

• Then we will begin simulations focused on factors affecting marine survival of salmon over the past several decades
 • Productivity changes?
 • Stormwater effects (nutrients, turbidity, contaminants)?
 • Changes in lower trophic level pathways?
 • Changes in competition (e.g., pink salmon)?
 • Changes in predation?

• We welcome ideas (and contexts) for scenarios and key mechanisms!
Puget Sound Atlantis model

- This model can also be used in forward “projection” mode to examine future scenarios.

- Example: nutrient loading scenarios out to 2040 and 2070, derived from projections of population growth and climate change-related hydrological and oceanographic changes
 - Roberts et al. 2011, WA Dept of Ecology Pub. 14-03-007

- Model output can also be linked to other model types, e.g., economic input/output models, to extend tradeoffs into socioeconomic domain
Vital Signs are a comprehensive set of ecosystem management goals and objectives

- Meeting multiple goals simultaneously is a challenge due to tradeoffs
- We are developing a modeling tool that will help address this challenge
Thanks!

Chris.Harvey@noaa.gov

Or, if you want actual good answers to any questions you might have, contact Raphael, Isaac and Michael:

Raphael.Girardin@noaa.gov
Isaac.Kaplan@noaa.gov
mschmidt@lltk.org