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Current Challenges in EBPR Practice

= |ncreasingly stringent permits demand higher consistency
and stability

= Backup chemical systems often required

= Sporadic metal salt addition negatively impacts P recovery
processes

= External carbon may be required to obtain desired C/P
ratio; increases carbon footprint

= Conflict between P and carbon diversion & N optimization
(i.e A- B stage, PN/PDNA)
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Influent roCOD/P Ratio Correlates with EBPR Stability

Sufficient roCOD required for EBPR
Carbon supplement — external C, fermentate

EBPR Is Considered as Unfavorable for:

- Low influent C/P

- Fluctuating loading

- Not compatible with short-cut N removal processes

- Stringent limits: Chemical back-up needed for compliance

0 20 40 60 rbCOD/P (mg/mg)
ffCOD/P (mg/mg)
Gu et al., 2008, WER- survey of EBPRs in US Liu et al. 1994; Schuler et al., 2003
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Alternative Technology: Side-Stream EBPR (S2EBPR)

S2EBPR
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S2EBPR
« Emerging technology integrating on-
site sludge fermentation

» Offer advantages over conventional
» Influent C/P-independent
= Controlled anaerobic zone
= Favorable condition for PAOs
» Flexible implementation
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S2EBPR Survey in US - Various S2EBPR Configurations
Side-Stream RAS (SSR) Side-Stream RAS plus Carbon (SSRC)
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Performance Survey of S2EBPR

3-year performance data

South Westside Cedar Henderson Conventional
Cary Regional Creek EBPR*

th
perignt"e 0.28 0.04 0.82 . 0.05-0.8 [0.26]
goth
sercentie 089 0.10 1.10 1.00 0.2-2.5 [1.6]

90th/50th

. 3.17 2.39 1.34 3.13 2-24 [11.5]
ratio

» Relatively stable performance were shown for all the 4 S2EBPR facilities,
as indicated by the 90th to 50th percentile ratio (90%/50%) for effluent P
levels.
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Microbial diversity in S2EBPR plants than those

In conventional EBPRS
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S2EBPR vs A20

Full-scale pilot testing
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Phenotypic Changes at Single-Cell and

Functionally-Relevant Population Level

Increase in p0|yP’ g|ycogen intensity among Normalized PHA intenSity in individual cells
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Improved performance and stability in S2ZEBPR maybe associated with:
= Higher polyP and glycogen storage
= Higher PHA available for P uptake
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S2EBPR Reforms EBPR Design Strategy

Conventional

S2EBPR

C-source:
-Influent-dependent acetate-
dominant

- Acetate-using PAOs/GAOs
- Susceptible to influent changes

PAO/GAO competition:
- Hac uptake kinetics
- Ks based competition

Anaerobic Zone:

-impacted by recycles/influent

Configuration flexibility:
- Requires rbCOD/anaerobic
- Not compatible with carbon
diversion (A/B)

O

C-source;

- In situ fermentation, more
complex substrates mixture

- Diverse PAOs/GAQOs using
various substrates

PAO/GAO competition:

- Other VFAs (propionate) favors
PAOs
- Differential decay

-Better controlled
-Larger anaerobic biomass % due to
higher MLSS & small split RAS flow

- Flexible implementation
- Compatible with carbon diversion
or short-cut N process
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Challenges in Studying EBPR Systems

= Lack of isolated key culture (e.g.
Accumulibacter PAO)

= Bulk-level studies cannot reveal
diversity of metabolic pathways
= Limitation of phylogenetic
methods
« Target known PAOs, GAOs

= Candidate methods linking
phenotype to phylogeny

= MAR-FISH
« |sotope-based approach (e.qg. (- Ot
SIME)

« Functional omics approach

Prezsaac
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« Raman Microspectroscopy - HRERIBIRFIRY R
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Avalilable Microbial Ecology Tools for Full-Scale

S2EBPR Understanding
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Simultaneous Phylogenetic Identification and Single

Cell phenotyping
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(Matrices correlation analysis, Machine learning)
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Look Into Phenotypic Changes of PAOs and GAOs via

Single Cell Raman Spectroscopy (SCRYS)

= SCRS: afiner resolution phenotyping approach

Cell phenotyping via Resolved C, P Population-level
metabolic state mass flux Functions

EBPR-related SCRS Cluster PAOs, GAOs based on
fingerprint phenotypes, correlate with phylogenetic
— ' — diversity
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Does S2EBPR Suppress GAOs?

Comparable known GAO abundance in S2ZEBPR vs conventional

(B) Ca. Competibacter Ca. Contendobacter Defluviicoccus Propionivibrio
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S2EBPRs Enrich for Higher PAOs and GAOs that Use More

Diverse Carbon Sources

Raman phenotype based total PAO and GAO quantification
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Implications: Implications:
* S2EBPR select for other « Other carbon-utilizing unknown
substrate-utilizing PAOs GAOS?
» Acetate-based assessment maybe  More consistent with C/P ratio vs
biased PAO/GAO relationships
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Evidence of “Sequential” Intracellular Polymer Utilization

Implications in Maintenance/Decay

Single cell Raman microspectroscopy reveals temporal trend of polyP and
glycogen utilization in PAOs and GAOs under extended anaerobic condition

PolyP and glycogen use in

Glycogen in GAOs:

Both consumed, then accelerated polyP
usage after cessation of glycogen utilization

Quick glycogen
utilization in 12 hours

up to 72 hrs
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Model Development

* Glycolysis-TCA pathway shift
« Agent-based simulation on
PAO phenotypes of

* PAOs, GAOs and OHOs « Maintenance precedes glycolysis-TCA preferences

« PAO-GAO competition decay « PAO-GAO competition with

» Agent-based modelling « PAO sequential polymer this pathway shift under
framework usage in maintenance S2EBPR conditions

Agent- Glycolysis-
ASM2 o +S2EBPR TCA shift and
Henze et al, .
( 2002) model e(?_(lt:gi’;g)n metabolic

(Bucci et al, 2012) versatility
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Agent-Based Modeling Simulation Showed

Differential Decay for PAOs vs GAOs
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Take Home Messages

= S2EBPR is an alternative strategy that can address
some of the current challenges

= S2EBPR allows for flexible implementation with more
controllable, less influent carbon-dependent, more
favorable PAO enrichment over GAOs

= S2EBPR improves process stability compared to
conventional EBPR

= S2EBPR allows EBPR to be compatible with carbon
capture/redirection processes
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S2EBPR Enables Sustainable Nutrient Removal and

Carbon/Energy Recovery

A/B Process (PN/A) + S2EBPR pilot plant at Hampton Road Sanitation District, US

A-Process B-Process: Intermittant aeration, short-cut
L N removal
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Credit to: Charles Bott, Stephanie Klaus, HRSD team
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Full Scale Implementation and Piloting

e Metropolitan Water Reclamation District of

On'gomg WRF prOJeCt Greater Chicago, .
e Metro Wastewater Reclamation District, Denver,
- More than 15 participating Colo.
facilities who will implement Ui e
or pilot the S’ EBPR e Hampton Roads Sanitation District, VA

e (Clean Water Services, OR

e Geneva, lll.

e Western Wake WRD, NC

e Boulder, Colo.

e NEW Water, Green Bay, Wisc.
e Wilson, NC

e Trinity River Authority of Texas

- Develop design guidance and
monitoring strategies

e Madison Metropolitan Sewerage District, Wisc.
e Longmont, Colo.

e DC Water, Va.

e Toronto Water, Canada

e Olathe, KS
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