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Implications of a steep nearshore for
the ecosystem:

It is only a narrow “fringe” of nearshore
habitat that supports many species at some
point in their life cycle

Because narrow, we have less ‘leeway’
regarding destruction of nearshore habitat

Removing or degrading a portion of the
nearshore habitat in Puget Sound does not
have the same proportional effect on the
living system as in a shallow, flat estuary

Photo: PSAT 2004 State of Sound




Puget Sound Is deep, with strong tides, but sills too

0 meters

200 meters
Newton, Stormer, UW-COFS; Data source: NGDC d@jy



Puget Sound circulation is retentive
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Implications of reflux for ecosystem:

Inputs to Puget Sound stay around for a long
time...

— Long-lasting effects that can be
de-coupled from source elimination

« Biotain Puget Sound have a high degree of
residency

« Both good and bad: this is why Puget Sound is
highly productive, but also highly retentive of
contaminants

Photos: PSAT 2004 State of Sound



BASINS AND SILLS
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Puget Sound Basins
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the Puget Sound Tide Channel Model. Data courtesy of Mofjeld
et al. (2002).
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ESTUARINE
CIRCULATION
IN AN
INLET

Thomson, 1994

Buoyant river water flows out of an estuary on surface,
dense ocean water flows in at depth, but there is mixing,
and sills cause “reflux” of water back in to an estuary.
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Basins

Hood Canal: slow
circulation, strong
stratification

Main Basin: fastest
circulation, strong mixing

Whidbey Basin: most
freshwater input

South Sound: strong
mixing in some locations,
slower circulation



“The many faces of Puget Sound”

By Eric Sorensen
Seattle Times science reporter; Monday, June 25, 2001

“Here's how some of the Sound's personalities work:

e The South Sound is so dynamic, with channels and inlets of varying
depth, that different samplings show wildly different profiles.

e The Whidbey Basin off Everett is wonderfully productive in its top layer
to the point where the phytoplankton below 30 feet is shaded out by the
phytoplankton above and the incoming sediment of the many rivers. In
the lower levels, ocean water can linger and last as long as a year.

e The north part of the Sound's main basin is well-mixed, with strong
tides and sills turning the water regularly.

e The southern part of the basin is more stable, letting phytoplankton
develop more easily.

e Hood Canal has so much phytoplankton that it goes off the researchers'
graphs. It's also less turbulent, with upper layers letting the waters warm
so much that by midsummer temperatures can top 70° F. By comparison,
what's 489 F in Friday Harbor in November will be 489 F in June.”

http://community.seattletimes.nwsource.com/archive/?date=20010625&slug=pugetsound25m0



Some characteristic. features of the three main basins of the Georgia-Fuca system.

HS = Haro Strait; RS = Rosario Strait; AI = Admiralty Inlet; V-GP = Victoria-Green Point.

Strait of Georgia Puget Sound Juan de Fuca Strait
Type of estuary Partially-mixed Partially-mixed Well-mixed
Area (km?) 6,800 2330" «— 3,700
Volume (km?) 1,050 169* 402
Mean depth (m) 155 62¢ 200
Maximum depth (m) 420 Texada Is. 2844 Pt. Jefferson 300+ (at mouth)
Yearly Mean Runoff (m?/s) 5,800° 22000 < 500°
Drainage Area (km?) 286,890P 40,327° 7,420b
Sill Depths (m) 90 (HS); 50 (RS) 65; 105 (AI) 130 (V-GP)
Basin flushing time, summer 50-75 days 120-140¢ days 30-60 days
Basin flushing time, winter 100-200 days 120-140° days 30-60 days
Transport (X10¢ m?/s) variable/ill-defined 0.01-0.10 0.10-0.90

Oceanic control is strong

L

Thomson, 1994
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TABLE 5. Estimates of net primary production (gC m—2 yr=') from West Coast estuaries from five different habitat types. Conversion,

1 g dry wt = 0.4 gC,

Annual

Plankton
Primary Actial Annual  Aerial Annual  Annual

Annual

Estuary Production Tidal Marsh npp  Eclgrass npp  scaweod npp  Tideflat npp Reference

Cowichan River 492 Eennedy 1982

Oualicum River GO7-698 Dawe and White 1982;
Kennedy 1982 in Hutchinson 1986

MNanaimo River 17-203 Eennedy 1982

Salmon River, British Columbia 474 Eennedy 1952

Camphbell River, British Columbia 489 Kistritz and Yesaki 1979

Fraser River 275-T18 Yamanaka 1975

Nisqually River 363-hH6 Burg et al. 1975

Mooksack River Tl Disraeli and Fonda 1979

Padilla Bay 351 206 148 Thom 19940, 1989

Strait of Georgia 300 Harrson et al. 1994;
Harricon and Fodome 1008

Puget Sound S04 4180 in Philips 1984

Puret Sound 1.355 4.185 1.285 Thom et al. 1984

Skagit River 112-521 in Hutchinson 1986

Squamish River 24-213 100y in Hutchinson 1986

Grays Harbor 9-110 196280 322 &-503 26-234 in Thom 1981

Columbia River 432-1,001 Macdonald 1984

Nehalem River 350-702 Filers 1975

MNetarts Bay 737 1,120 12 McIntire et al. 1985

Selitz River 480800 Gallagher and Kibby 1981

Yaquina Bay 3 McIntire et al. 1983

Coos Bay 125480 Taylor and Frenkel 1979;
Hoffnagle 1980

Oregon Estaries 180740 Kibby et al. 1980

Humboldt Bay 266 in Philips 1984

San Francisco Bay 110-1,264 in Josselyn 1983

Mugu Lagoon b1 Zedler 1982

Upper Newport Bay 240 Zedler 1982

San Diego Bay 240 Zedler 1982

Sweetwater River 4410 Zedler 1982

Tijuana River 164-340 34-253 Fedler et al. 1992

Emmett, et al., 2000
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Basins

Hood Canal: slow
circulation, strong
stratification

Main Basin: fastest
circulation, strong mixing

Whidbey Basin: most
freshwater input

South Sound: strong
mixing in some locations,
slower circulation



Primary Production
(mg C m2d1)

>1000-2000
>2000-3000
>3000-4000
>4000-5000

Newton et al., 2000




Chlorophyll a

(mg chl m=) .

<30 1
>30-50

>50-70

>70

127

Newton et al., 2000



(P /B) percent
Increase
compared to SJF

<10
>10-50
>50-100
>100

29/50

-31/372

Newton et al., 2000




What makes Puget Sound unique?

2" |argest estuary in the US, one of most productive in the
world

Deep, glacial fjord average depth 62.5m, max ~280m:
* Chesapeake Bay average depth 6.4m
* San Francisco Bay average 7.6 m, max 30.5m

Large tidal exchange: 3-4m

Ocean-dominated salinity: Puget Sound 83% seawater vs
50% seawater for Chesapeake Bay

Distinct basins

Source: Puget Sound 2015 Fact book, Puget Sound Institute



Problems

 Not all basins work the same, so our
monitoring needs to be distributed.

* Within a basin, there can be strong spatial
variation
» Can be strong temporal variation



370 profiles
in July 2008

Devol & Ruef
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Representativeness critical to understanding change in highly dynamic environment.

Sensor drift was found to vary 10% for the ORCA buoy oxygen sensors over one month. Using
samples from monthly versus every 6 hours intervals was found to account for 50-300% variation
or error, based on Monte Carlo sub-sampling simulations of 6-h frequency data (Devol et al.2007).




Strong spatial variation Heo@)p
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Problems

Not all basins work the same, so our
monitoring needs to be distributed.

Within a basin, there can be strong spatial
variation

Can be strong temporal variation

What does a nutrient concentration really
mean?



for a given
| N

CONC ATION

two possible scenarios:
1)

low input rate — low uptake rate

2)

high input rate high uptake rate
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Low nutrients could indicate lack of
phytoplankton (persistence of lack of
nutrients, thus low biomass)

Low nutrients could indicate a bloom
(sudden uptake of nutrients with high
biomass)
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Figure 2. The simplified ewfrophication model used for the National Assessment

External
Mutrient Inputs
National Estuarine Eutrophication Assessment
Effects of Nutrient Enrichment in the Nation's Estuaries

Y National Oceanic and

Nationa

Hitrogen and \
Phesphorus B

EFFECTS OF NUTRIENT

Primary Secondary
Symptoms Symptoms
O vaaniiny
vallability Loss of Submered
Eﬂr&me Chl-a Aquatic Vegetation
oncentrations :
SAV Spatial
-
E":.'hlE".“‘g’ ) Coverage
rovt
piphtic SAV Spatial
Problamatic Coverage Trends
Macroalgal
Growth
Algzl Dominance
Changes Harmful Algae
Diatoms to
Flagellates Muisance Bloom
. Problems
Benthic
Dominance to Toode Bloom
Pelagic Problems
Dominance
. ImahsF:I
rganic Matter Low Dissohed
Decomposition ISSD.-.
Extreme Chl-a = Ancoda
Concentrations Hypoxia
MF - E';'f Biological Stress
acraalg
Growith

ENRICHMENT IN THE

» = R
National Estuarine Eutrophication

Assessment Update

“These particular
systems are influenced

“In general, the symptoms contributing most to high eutrophic

conditions were elevated levels of chlorophyll a, coupled with various
combinations of macroalgal abundance, nuisance/toxic algal blooms,
and low dissolved oxygen. High chlorophyll a concentrations is also a
fairly common natural condition in some North Pacific estuaries due

to naturally occurring seasonal blooms.”

Bricker, S.B., et al., 1999

by inflows of upwelled
oceanic water which is
low in dissolved oxygen,
and therefore contributes
to dissolved oxygen
problems which might
otherwise be attributed
to human influence.”

Bricker et al., 2007
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Growth of Unicellular Organisms
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Example of Growth of a Resource-Limited Microbial Culture

4"‘ (1) Instantaneous growth rﬁ&i“(= 1/N dN/dt) vs. time; p is another
term for r, the intrinsic growth rate in ecological literature; here,
at day 6 taken as 95% of 0.347 day™!, (i.e., generation time of two days),
(9) m (2) Concentration N vs. time ( = cumulative population growth);

(%) Population growth vs. time (finite growth, from multiplying (1) by mean

PMQ‘*N*‘oncentration over daily intervals, from (2)).
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Spring:

Water guality impacts from

eutrophication
* Dependent on stratification

Stratified:
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Well-mixed:




% Iincrease in
integrated prod’n

<5
>5-15
>15-25
>25-35

Newton et al., 2000



% increase Iin
Integrated /
surface prod’n

<5/<10
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>35/>70

Newton et al., 2000




Hood Canal Vertical stratification strong
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Annual cycle
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Hood Canal
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South Sound
Phytoplankton blooms appear spatially

variable and dynamic
Surface chl Surface NO3

/a8

pesaa

Albertson et al., 2002



South Sound
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Main Basin  Strong temporal variability
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Main Basin
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Regional patterns

Hood Canal: 1.0-1.5kg C m=y-t
— highest P, B, ~ constant nutrient sensitivity

South Sound: 0.7-1.1kg Cm=?yt
— high and variable P, B, nutrient sensitivity
Main Basin: 0.8 kg C m=2y!

— dynamic and moderate P, B, variable nutrient
sensitivity

Strait of Juan de Fuca: 0.5kg C m2y-
— lowest P, B, strong ocean influence




Problems

Not all basins work the same, so our
monitoring needs to be distributed.

Within a basin, there can be strong spatial
variation

Can be strong temporal variation

What does a nutrient concentration really
mean?

Do we understand the system?



Sources of N to Puget Sound

« Land

— ground water
— surface water: rivers, streams, storm water, etc.
— point sources: sewage, industrial

 Water
— recycled from consumers: zpk, fish, benthos, etc.
— flux from marine sediments
— Import from other marine areas: ocean, etc.
o Air
— atmospheric nitrogen equilibrium with water
— rain
— fallout of particles



Load estimates:

Atmosphere
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Rivers 7% ? %
Upward flux to photic zone 4 ? %

|

‘Storage’ ? %

Benthic ? %



Lower Hood Canal N-Budget (Mt/mo; JJAS):

Freshwater input
(incl. 2.4 from septics

3.2

9 dNO3/dt
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Concentration X flow = flux !

Nitrate Currents

along channel current, Twanoh

mean NO3, Twanoh
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The answer you get depends on how you sample...

0 200 400 100 0 20 40
Oxygen (umol/kg) Chlorophyll {mglms) Nitrate (umol)

HcD@P



Load estimates:

Atmosphere
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Nutrients

VAVAVAVAVAVAVAVAVAV S

Photosynthesis (P) : [OZ]I
CO, + H,0 + nutrients—CH,0O + O,

Respiration and Decay (R) : [O,] l
CH,0 + O,—*CO, + H,0 + nutrients

Stratification

Devol 2003



‘ Nutrients ‘ ‘

VAVAVAVAVAVAVAVAVAV S

Photosynthesis (P) : [Oz]'
CO, + H,0O + nutrients—CH,O + O,

Photosynthesis (P) : [OZ]'
CO, + H,0 + nutrients—CH,0 + O,

Stratification

Respiration and Decay (R) : [O,] l
CH,O + O,—* CO, + H,0 + nutrients

Devol 2003

Euphotic zone



Problems

Not all basins work the same, so our
monitoring needs to be distributed.

Within a basin, there can be strong spatial
variation

Can be strong temporal variation

What does a nutrient concentration really
mean?

Do we understand the system?
How will things be changing?
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Variation in spring bloom
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Figure 6 Periods of sun for 3 or more days as indicated by mean daily sky cover values of 50% or less.
Mean daily sky cover was dztermined from observations made from sunrise to sunset at hourly intejvals
except for June to October 1994 when observations were made every 3 hours.

Eisner et al., 1997



PNW estuaries
have strong
Influence from
climate

Global influence on:

ocean conditions
watershed conditions
local weather



Oceanographic Changes in Puget Sound

and the Strait of Juan de Fuca during the 2000-01 Drought

(anadian Water Resources Journal
Jan A. Newton'?, Eric Siegel' and Skip L. Albertson' vy, 28 No.4, 2003

Percent change in
stratification

(10-y mean — Oct 00-Sep 01/10-y mean)

0-30%

30-49% Mean = 56%
50-69%

>70%







Flow in Strait of Juan de Fuca:

North South

Canada U.S.A.

- JORDON RIVER JUAN de FUCA STRAIT PILLAR PT.
fresher, % 11 112 113 114 115 116

warmer water

from Puget

Sound and

Georgia

Basin flowing colder, salty

out water from
Pacific Ocean
flowing in

0 2 4 6 8 10 12
Nautical Miles

Figure 10. Cross-section of residual along-channel flow in the central portion of Juan de Fuca Strait for the period

6 March—14 June 1973 (speeds in cm/s). The view is up-strait toward the east. Negative values (shaded)
are seaward and positive values are landward. The transport in each layer is about 0.1 x 106 m?¥s.

(Adapted from Godin et al. 1980)

Symposium on the Marine Environment — 1994 Page 51

Thomson, 1994



(this means how fast the water flows
out the Strait) ~
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Conclusions

* Drought period increased the salinity of
estuarine waters, leading to higher density
surface layer and weaker stratification.

» Higher salinity surface waters with weaker
vertical density gradient result in decreased
outflow velocity and longer residence time
In estuary.

* Implications for oxygen, phytoplankton
blooms, trophic transfer, and transport or
retention of larvae, species, and pollutants
need further investigation.
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Solutions?

« More focus on mechanisms
— Fluxes

« Sustain long-term monitoring
— Plankton, rates

» Keep finding time for analysis
— Including models
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