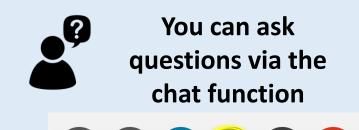
Welcome to the February 23 Nutrient Forum Meeting!

Thank you for joining us today!

- Please make sure you are muted upon entering the webinar
 - ✓ We will be starting shortly

Welcome

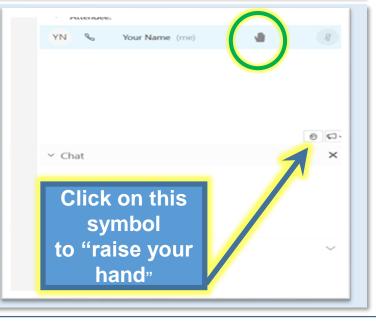
Please connect your audio using steps 1, 2, and 3

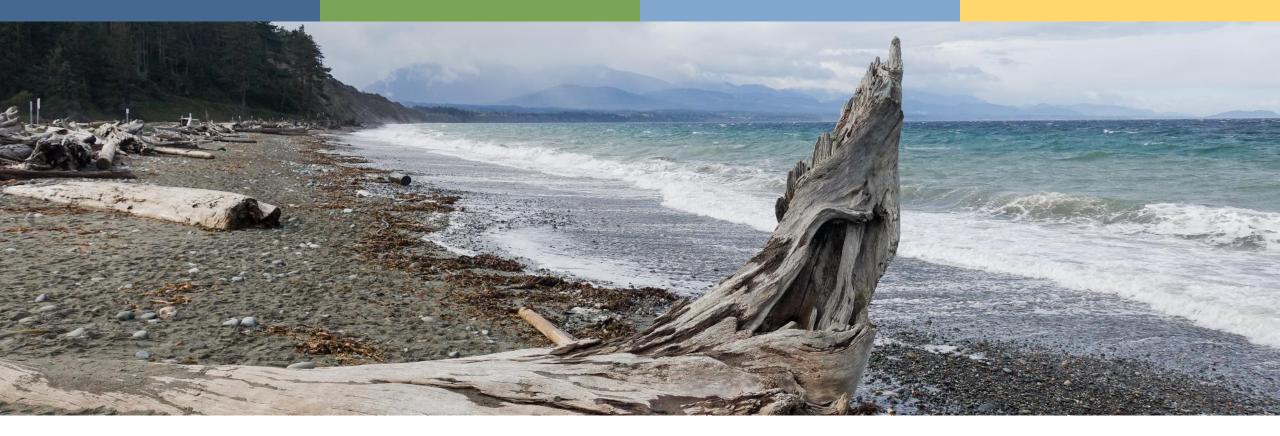

We will do a sound check shortly

(2 Move cursor to bottom of your screen to Select "Connect to Audio" icon. show Webex controls. 5 Audio Connection 3 Choose A. Use computer for audio Audio Connection B. Call me at (enter your phone number) You're not connected to audio • WebEx calls you. Connect to audio • You listen through your phone 🗘 Use computer for audio 🕸 Α 3 C. Call in (using your phone) Enter **YOUR** phone # В 😤 Call me Options Call toll free: 855-929-3239 C 😵 Call in Enter meeting code

NOTHING WORKING? Use the chat box to send us a message.

How to Participate


∨ Chat	×
To: Everyone	~
Hello Everyone! Type your questions here.	


You can also ask questions by raising your hand so we can unmute you to participate

We ask that you:

- 1. State your name first before speaking.
- 2. Mute your audio unless speaking.
- **3. Lower your hand** when you are done speaking

Puget Sound Nutrient Forum

Next phase of Salish Sea Modeling Scenarios

February 23, 2022

Why we're here:

to restore Puget Sound.

Table of Contents

2

4

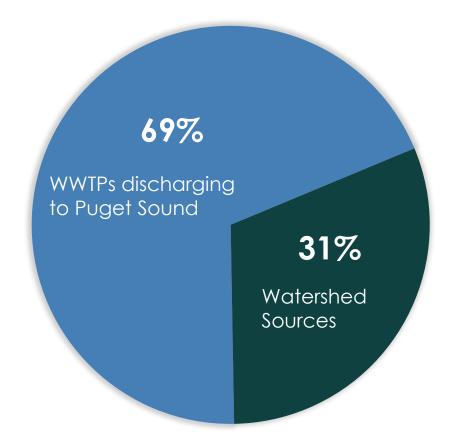
Overview of Ecology's strategy

Recap of latest Salish Sea Modeling Results

Objective for next phase of modeling

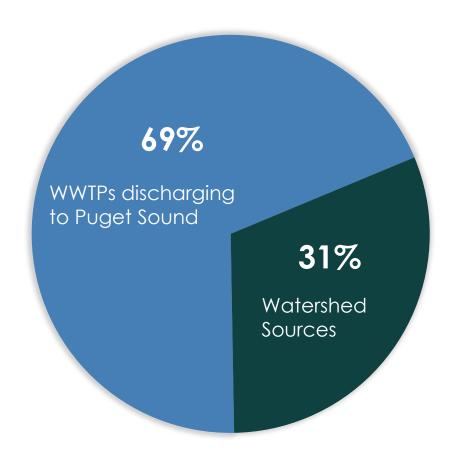
Draft Salish Sea modeling scenarios

Q/A


Deep-dive into technical details

Our strategy: reduce human sources of nutrients

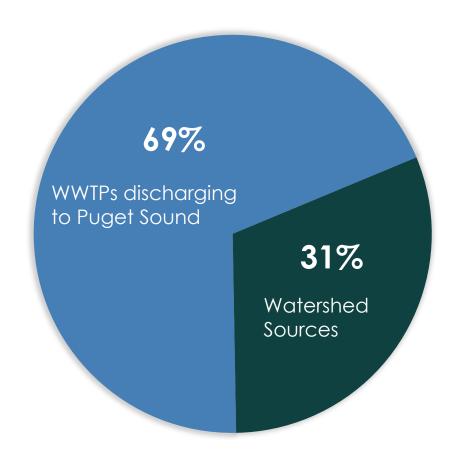
- Focus on where we can make biggest and fastest impact to meet standards
- Continue modeling: identify areas most sensitive to human actions
- Define levels of reductions needed from WWTPs and watersheds



Focus on where we can make biggest and fastest impact to meet standards

Nitrogen load of human sources of nutrients

Focus on where we can make biggest and fastest impact to meet standards



Nitrogen load of human sources of nutrients

What we learned from Bounding Scenarios Report (2019):

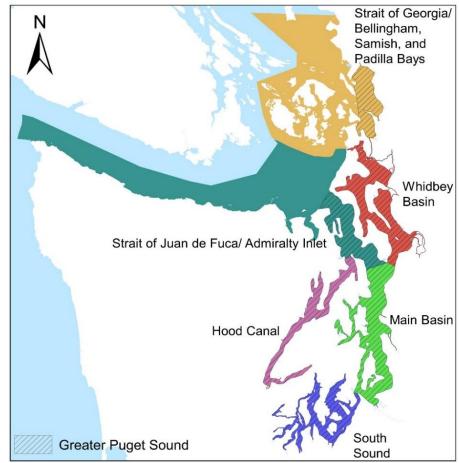
- Confirmed human sources of nutrients exacerbate low DO
- WWTP discharges contribute to low DO
- Watershed nutrient loads also contribute to low DO

Focus on where we can make biggest and fastest impact to meet standards

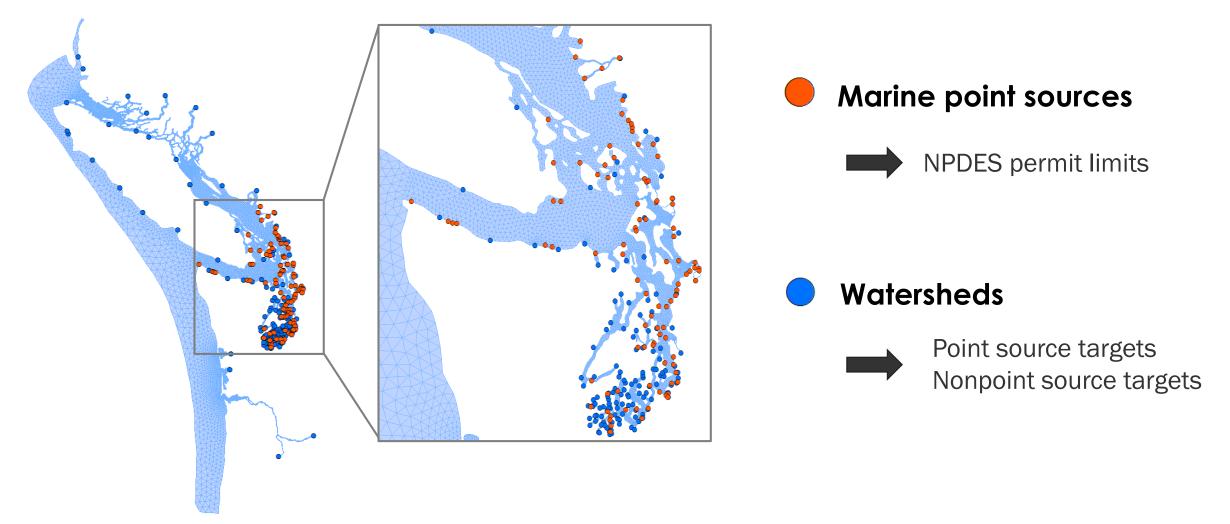
Nitrogen load of human sources of nutrients

What we learned from Bounding Scenarios Report (2019):

- Confirmed human sources of nutrients exacerbate low DO
- WWTP discharges contribute to low DO
- Watershed nutrient loads also contribute to low DO


Clean Water Act Responsibility

Continue modeling: identify areas most sensitive to human actions


Evaluated different combinations of marine and watershed source reductions

Use results to design next set of modeling scenarios

Identify combination of reductions that leads to most improvement

Define levels of reductions needed to meet standards

Puget Sound Nutrient Reduction Plan

Modeling informs nutrient targets

Nutrient limits (NPDES) for WWTPs Watershed targets and actions Financial & technical assistance

\$

Effectiveness monitoring & adaptive management

Why we're here TODAY:

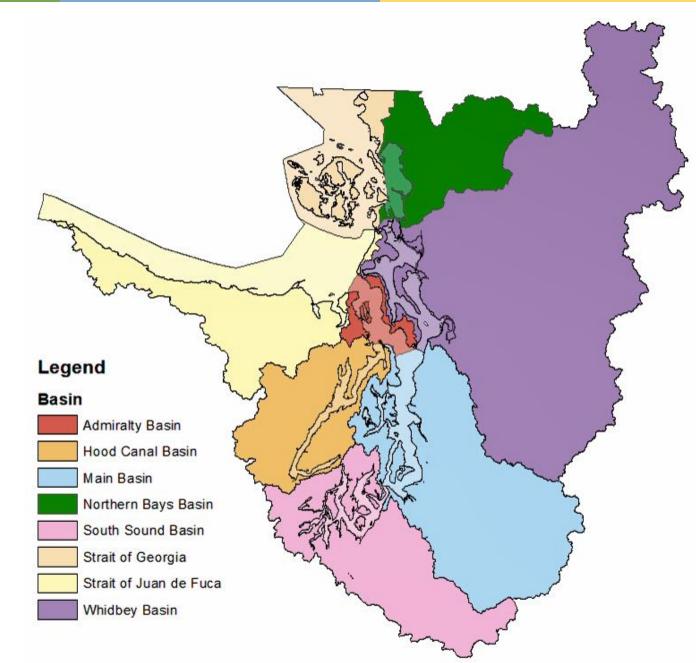
to present on the next phase of Salish Sea modeling.

Brief Recap: Key things we learned from our most recent Salish Sea modeling

Scenario: refers to one model run or a set of model runs that when evaluated with the Salish Sea model informs the answers to a specific nutrient management question

Scenario: refers to one model run or a set of model runs that when evaluated with the Salish Sea model informs the answers to a specific nutrient management question

Watershed load: nutrient inputs that originate in a watershed and are discharged into the Salish Sea via rivers and streams, both point and nonpoint sources.


Scenario: refers to one model run or a set of model runs that when evaluated with the Salish Sea model informs the answers to a specific nutrient management question

Watershed load: nutrient inputs that originate in a watershed and are discharged into the Salish Sea via rivers and streams, both point and nonpoint sources.

Wastewater treatment plant (WWTP): WWTPs that directly discharge to Puget Sound

Basin: Marine waters that share hydrodynamic characteristics and upland watersheds

Region: All basins combined in the WA waters the Salish Sea

Year 1 Optimization Scenarios

2019: developed 5 "scenarios" with Forum

- Watershed nutrient reductions by region
- Wastewater treatment plant (WWTP) reductions by region
- Annual vs. seasonal treatment at WWTPs
- Projected future population growth impacts
- Combinations of watershed and WWTP reductions

Recent modeling results highlights

We confirmed reductions in nutrients lead to significant improvement in water quality

We need reductions from both WWTPs and watersheds to meet standards

Higher regional population will lead to even worse DO problems if no actions are taken

We need to test more nutrient reduction combinations

Scenario 1: Watershed reductions in certain basins led to improvement in basin and other regions

- South Sound
- Main Basin
- Whidbey Basin
- Strait of Georgia and Northern Bays

Scenario 2: WWTP reductions in certain basins led to improvement in basin and other regions

- South Sound
- Main Basin
- Whidbey
- Strait of Georgia & Northern Bays

Scenario 5: What combination of watershed and WWTP reductions are needed to meet DO standards?

Scenario 5 Combination	WWTP Treatment Level (mg/L)	Watershed Reduction
Α	8mg/L	15%
В	8	40%
С	Balanced	40%
D	3	40%
E	3	65%

Nutrient reduction combinations led to most improvement

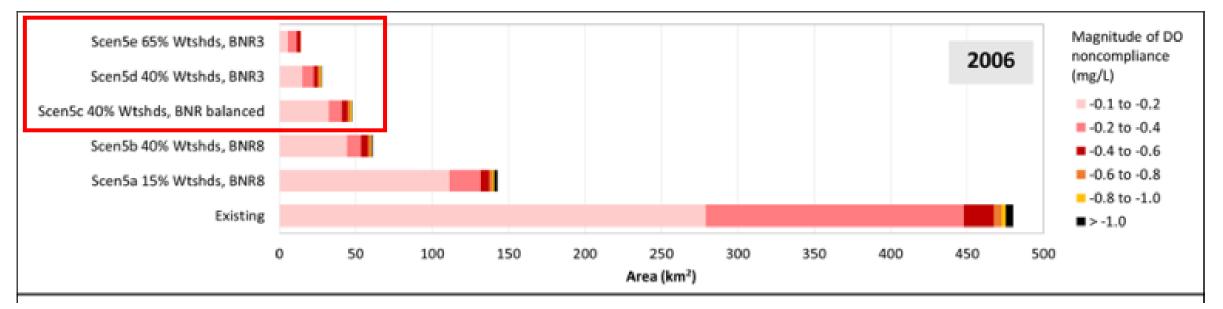
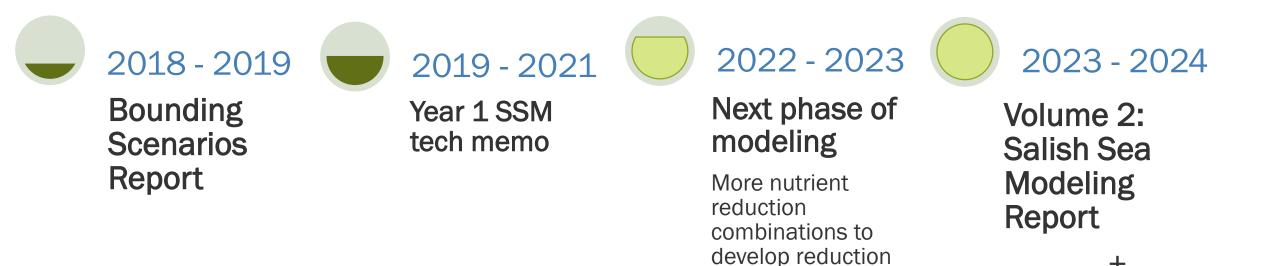


Figure 14. Distribution of magnitudes of predicted DO noncompliance within the total noncompliant area in WA waters of the Salish Sea across all Scenario 5 runs in 2006 (top) and 2014 (bottom).

*DO levels did not improve everywhere

+

Reduction Plan


26

Puget Sound

Nutrient

Where we're going

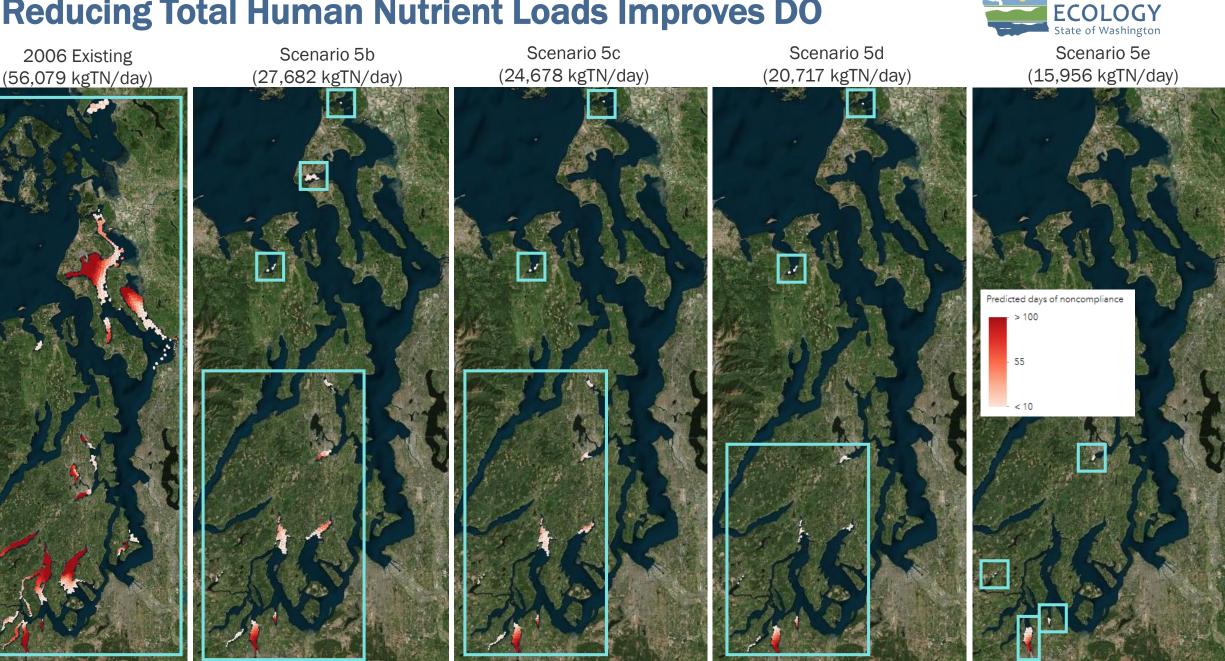
Next phase of modeling: **defining the level of reduction needed** from all sources

targets

High-Level Overview of Year 2 Optimization Scenario Proposal

DEPARTMENT OF ECOLOGY State of Washington

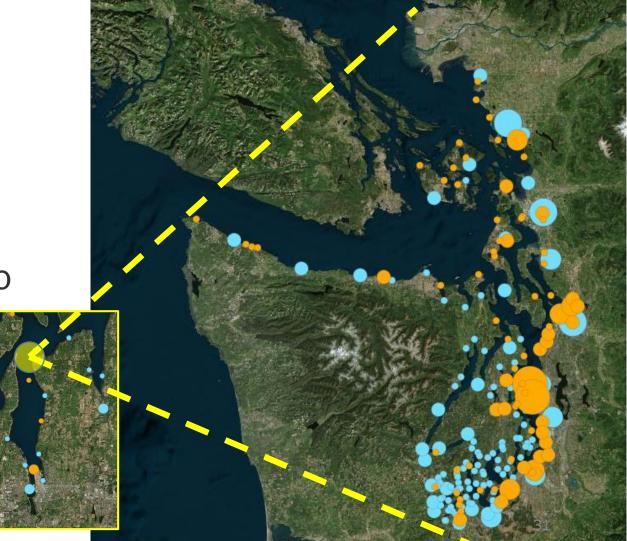
- How we designed and use Year 2 Scenarios
- WWTP Frameworks
- Watershed Frameworks
- Year 2 Scenario Proposal
- Q&A followed by a short break
- Deeper-dive into details along with Q&A


Topics for Today

Year 2 Scenario Goal

Find the nutrient reduction scenario/s that result in the highest predicted attainment of DO standards in the Washington waters of the Salish Sea.

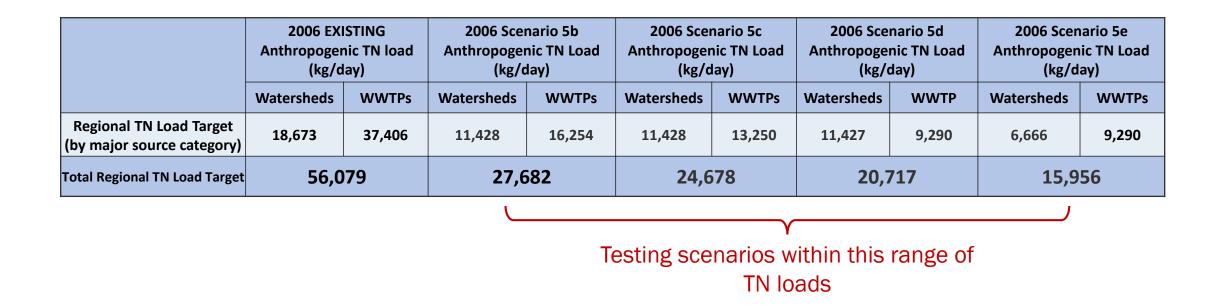
Reducing Total Human Nutrient Loads Improves DO


DEPARTMENT OF

Metrics for DO Improvement

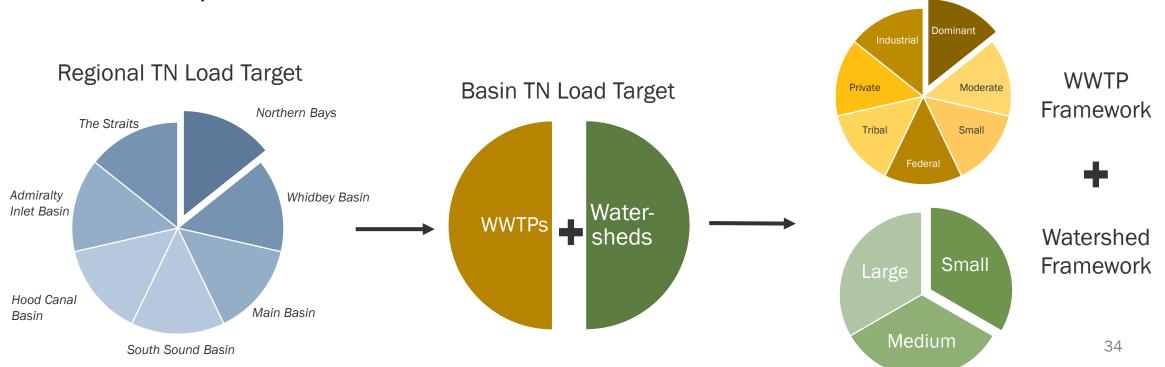
- 1. Marine DO Water Quality Standards
- 2. Budd Inlet DO TMDL bubble allocation for regional anthropogenic sources external to Budd Inlet.

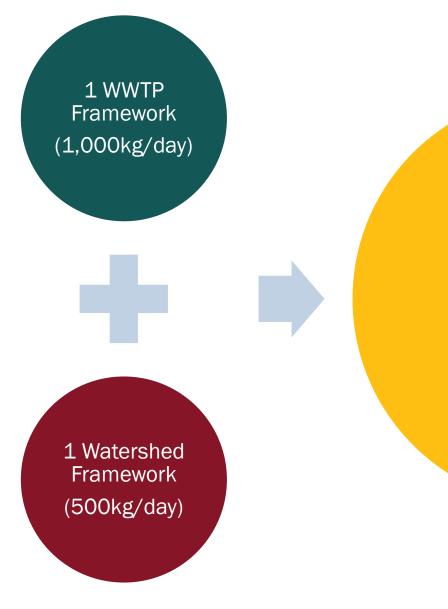
WWTPs reduce Nitrogen Watersheds reduce Nitrogen & Carbon



What is the best way to meet DO Standards?

Target TN Load Range for Scenarios


Proposed scenarios distribute loads in different ways while staying in the range defined by Scenarios 5b – 5e


TN Load Target: the amount of total nitrogen (kgTN/day) allowed from anthropogenic sources

Frameworks: Alternative ways to distribute nutrient loads to WWTPs and watershed inputs.

What is a Scenario?

1 Scenario (1,500kg/day)

3 Scenario Questions Will DO compliance improve if we make bigger reductions near predicted-noncompliant areas?

How much do smaller sources further away from predicted-noncompliant areas impact DO?

What are the DO improvements from different WWTP seasonal limits throughout the year?

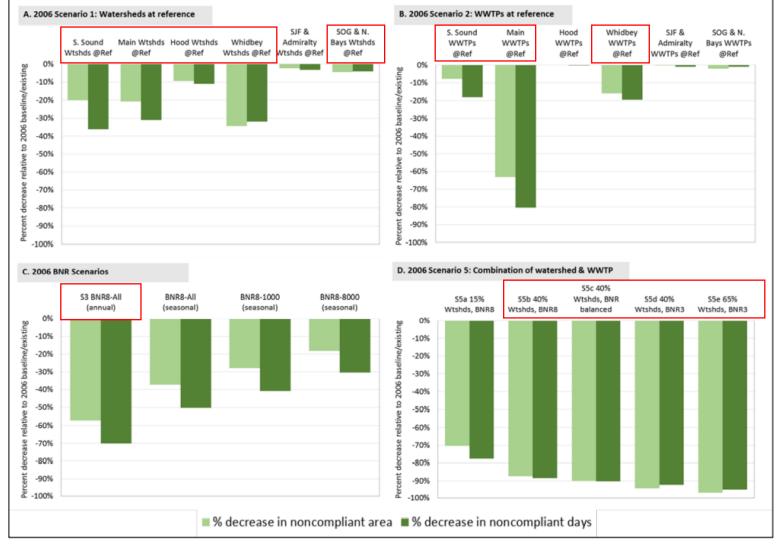
Where should we focus bigger reductions?

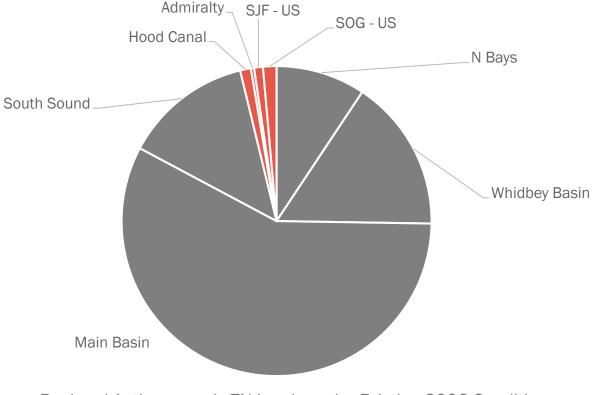
More watershed nutrient reductions in:

- South Sound Basin
- Main Basin
- Whidbey Basin
- Northern Bays

Annual Reductions from WWTPs are important in:

- Whidbey Basin
- Main Basin
- South Sound Basin




Figure 12. Percent change (decreases shown as negative values) in predicted noncompliant days and area in WA waters of the Salish Sea from all Optimization and BNR8 scenarios, relative to 2006 conditions.

What about smaller basin loads?

Relatively smaller loads in:

- Strait of Juan de Fuca
- Strait of Georgia
- Admiralty Inlet
- Hood Canal

Should we assign them the same level of reduction as basins with bigger loads?

Regional Anthropogenic TN Loads under Existing 2006 Conditions

What are the DO improvements from different WWTP seasonal limits throughout the year?

Annual BNR gets better DO improvement than critical season only

Biological Nitrogen Removal is temperature dependent

3-season approach for all WWTPs (cold, warm, and hot months)

Why 2006 and 2014 for Model Years?

Residence time is an important driver of DO in terminal inlets and bays

Higher residence time more impacts from anthropogenic nutrients

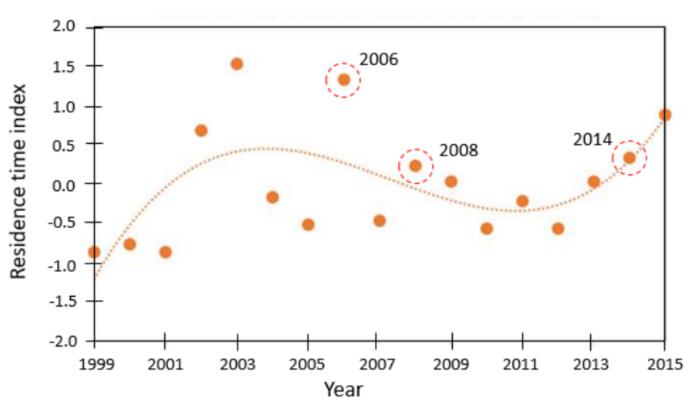
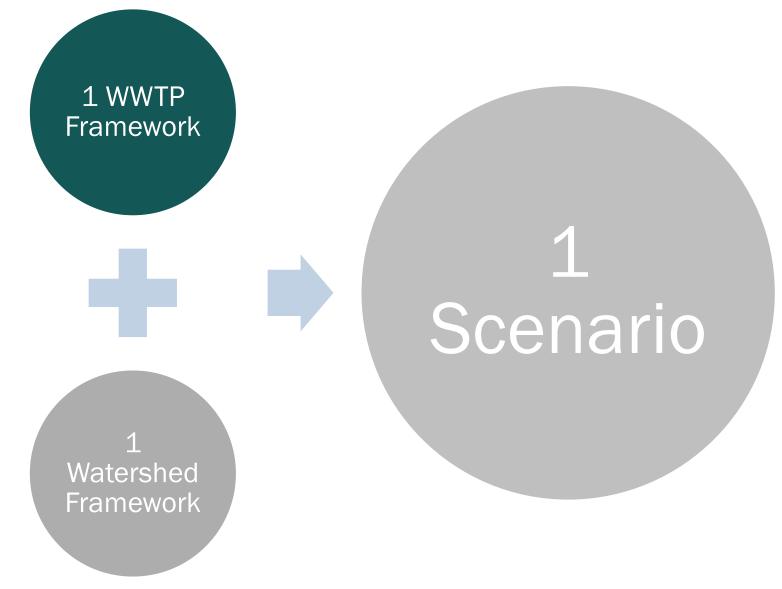



Figure 12. Index of residence time relative to normal in the top 0–30 m in Central Puget Sound, 1999–2015 (PSEMP, 2016).

Developing WWTP Frameworks

WWTP Frameworks Help Us Test

The size the regional WWTP TN load can be and still meet our water quality goals

How different seasonal TN loads impact DO throughout the year

How much reduction is needed from WWTPs in basins with relatively small TN loads

WWTP Framework Assumptions

Nutrient loads are calculated using actual effluent flows

Same carbon reductions assumptions used for previous WWTP scenarios

BNR levels apply to every facility within a basin or WWTP type according to the frameworks, unless a facility is already lower than the scenario level

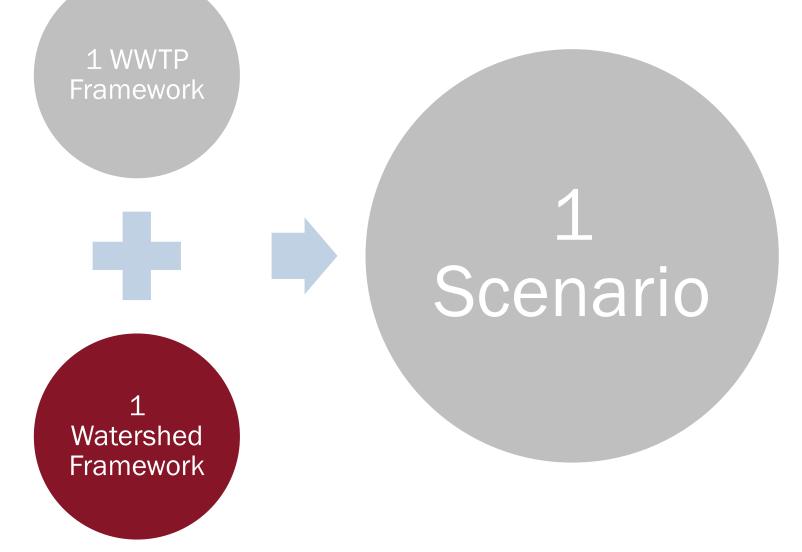
Reflect the Budd Inlet DO TMDL wasteload allocations

3-Season Approach for WWTPs

- Biological nitrogen removal process works better in Warm and Hot months
- Biggest concerns for low DO are during Hot summer months
- Need Cool season reductions to achieve annual TN load target

WWTP TN Reduction Frameworks

		Seasonal only							
	Framework A Framework B Framework								
Description	Estimated minimum end of TN Load range	Estimated minimum end of range with smaller reductions during cold season	Estimated maximum end of TN load range						
BNR Levels Used for Load Estimates	Cool= 8 mg/L Warm= 8 Hot= 5	Cool= <i>Remainder</i> Warm= 5 mg/L Hot= 3	Cool= 8 mg/L Warm= 5 Hot= 3						
Total WWTP Load (reduction from 2006)	16,203 kg TN/day (56.6% reduction)	16,203 kg TN/day (56.6%)	14,473 kg TN/day (61.2%)						


WWTP TN Reduction Frameworks

Spatial +

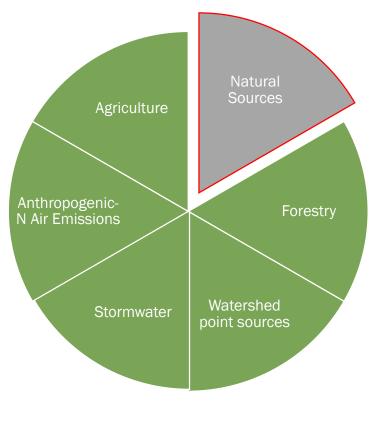
	Framework D	Framework E
Description	Improvement without WWTP reductions in basins with small loads	Cool season impact from Combined Storm/Sewer WWTPs
BNR Levels Used for Load Estimates	Uses estimated maximum TN reductions for basins 1-4 & WWTP loads in basins 5-8 at existing	Uses estimated maximum TN reductions for all basins but Combined systems at existing levels during cool months
Total WWTP Load (percent reduction from 2006)	14,636 kg TN/day (60.3% reduction)	18,541 kg TN/day (50.4% reduction)

Developing Watershed Frameworks

Watershed Frameworks Help Us Test

How much DO improves by reducing more nutrients from watersheds closer to predicted-noncompliant basins vs. evenly distributing reductions across all basins

The impact of two different regional watershed TN loads on DO


Watershed Frameworks

Only reduces the total human load fraction of watershed loads

Percent reductions apply to nitrogen and carbon

Annual reductions

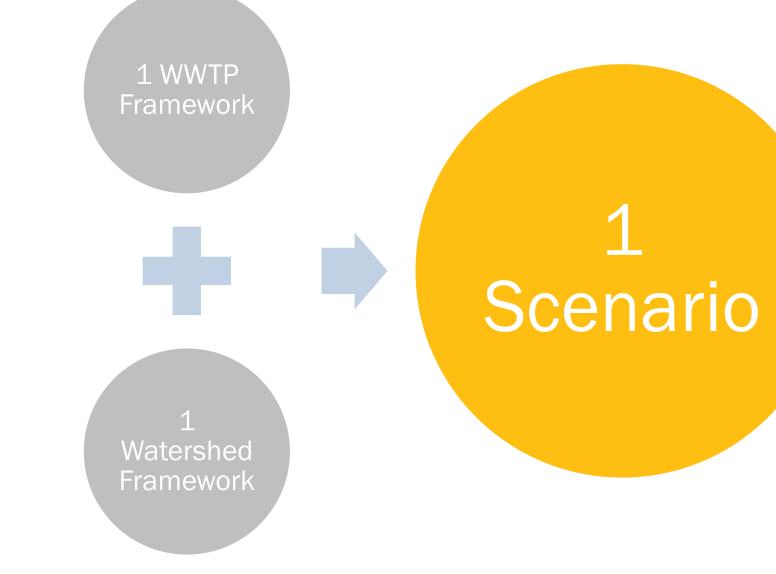
Examples of nitrogen sources in watershed TN loads

Watershed TN Reduction Frameworks

Big Basin Loads

	Framework F#	Framework G#
Description	Estimated minimum load reduction with spatial variation	Estimated maximum load reduction with spatial variation
Framework Variations	 F1: Higher reductions in basins with biggest impacts (1-4) F2: F1 + extra reductions in South Sound Basin 	 G1: Higher reductions in basins with biggest impacts (1-4) G2: G1 + extra reductions in South Sound Basin
	F3: F1 + extra reductions in Whidbey Basin	G3: G1 + extra reductions in Whidbey Basin
Total Watershed Load (reduction from 2006 load)	9,000 kgTN/day (51.8 %)	6,666 kgTN/day (64.3%)

Watershed TN Reduction Frameworks



Small Basin Loads

	Framework H#
Description	DO sensitivity to loads in the Straits, Hood Canal, and Admiralty Inlet
	H1: Uses G1 for basins 1-6, but puts basins Straits (7-8) at existing load
Framework Variations	H2: Uses G1 for basins 1-4 but puts basins Straits, Hood Canal, and Admiralty Inlet (5-8) at existing load
Total Watershed Load (reduction from 2006 load)	7,036 kgTN/day 7,453 kgTN/day (62.3 and 60.1% reduction)

Combining Frameworks into Scenarios

5 WWTP Frameworks

Possible Combinations (Scenarios) 8 Watershed Frameworks

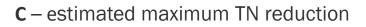
40 possible combinations for each model year

Find the combination/s that result in the most DO improvement

Step 1: Find the best predicted improvement from watershed reductions

Watershed Framework F (9,000 kgTN/day)

- **F1** –biggest reductions in basins with biggest impacts
- **F2** add extra reduction from South Sound Basin
- **F3** add extra reduction from Whidbey Basin


WWTP Framework (14,473 kgTN/day)

Scenarios (2006)

WWTP Framework (14,473 kgTN/day)

Watershed Framework G (6,666 kgTN/day)

- **G1** –biggest reductions in basins with biggest impacts
- **G2** add extra reduction from South Sound Basin
- **G3** add extra reduction from Whidbey Basin

Step 2: Find the best-predicted improvement from WWTP reductions

Watershed Frameworks

Best G# variation from Step 1 (6,666 kgTN/day)

WWTP Framework

A – estimated minimum TN reduction with treatment (16,203 kgTN/day)

B - estimated minimum that allows more load during cool months (16,203 kgTN/day)

C - estimated maximum TN reduction (14,473 kgTN/day)

Step 3a: Test impact from sources in the Straits, Admiralty Inlet, and Hood Canal

Watershed Framework

H1 - Uses G1 for basins 1-6, but puts basins Straits (7-8) at existing load (7,036 kg TN/day)

H2 - Uses G1 for basins 1-4 but puts basins Straits, Hood Canal, and Admiralty Inlet (5-8) at existing load (7,453 kg TN/day)

WWTP Framework

D - Uses estimated maximum TN reductions for basins 1-4 & WWTPs in the **Straits, Hood Canal, and Admiralty Inlet at existing levels** (14,636 kg TN/day)

Scenarios (2006)

Step 3b: Test impact from Combined Storm/Sewer Systems

Watershed Frameworks

Best G# variation from Step 1 -(6,666 kg TN/day)

WWTP Framework

E – Uses estimated maximum TN reductions for all basins but Combined systems at existing levels during cool months (18,541 kg TN/day)

Scenario (2006)

Step 4: Test best WWTP/Watershed Framework combo for 2014

Step 5: Any combo we haven't tested yet but could be useful

Reserve work capacity for:

- Testing previous combinations during model year 2014
- Another combination of frameworks we haven't tested yet

0-8

Scenarios (2014 or 2006)

Step 6: Increase Scenario 5e DO improvement

Can we fully meet DO standards if we redistribute the total loads from Scenario 5e with more targeted watershed reductions?

Watershed Frameworks

Watershed Framework G2 (6,666 kg TN/day)

WWTP Load from Scenario 5e

All WWTPs discharge loads equivalent to hypothetical TN load reduction from biological nitrogen reduction concentrations of 3mg/L, annually (9,290 kg TN/day)

Scenarios (2006 & 2014)

Draft Year 2 Optimization Scenario List and Suggested Sequence	Number of Possible Runs for each Option
Step 1: Find the best-predicted improvement from watersheds. Test all 6 Watershed Frameworks against each other by pairing each with the WWTP framework with the lowest regional load baseline (model year 2006)	
 WWTP Framework C + Watershed Framework F1 (additional run with Watershed G1) WWTP Framework C + Watershed Framework F2 (additional run with Watershed G2) WWTP Framework C + Watershed Framework F3 (additional run with Watershed G3) 	6
Step 2: Find the best-predicted improvement from WWTPs. Test 3 similar WWTP baselines against each other using the best performing watershed framework; one of the following will have already been run in Step 1 (model year 2006)	
 Best Watershed Framework + WWTP Framework A Best Watershed Framework + WWTP Framework B Best Watershed Framework + WWTP Framework C 	2
Step 3: Test impacts from sources in the Straits and Hood Canal, and from combined storm/sewer systems (model year 2006)	
 WWTP Framework D + Watershed Framework H1 WWTP Framework D + Watershed Framework H2 WWTP Framework E + Best Watershed Framework 	3
Step 4: Test best WWTP Framework & Watershed Framework combo for 2014	1
Step 5: Capacity to test additional combinations. Final runs of any framework combination we haven't tested yet or run for model year 2006 or 2014 but want to test	0-8
Step 6: Increase Scenario 5e improvement. DO Standards attainment test with modified Scenario 5e framework (model years 2014 and 2006) designed to increase DO improvement compared to Scenario 5e predictions	2
 Uses Watershed Framework G1 + Scenario 5e WWTP loads (BNR3-all annual) 	
Total Model Runs	15-23

How We Can Use Scenario Results

Scenarios	Total Regional	Percent	Total	Total	Maximum	
(WWTP Framework & Watershed Framework)	TN Load	Reduction from	Noncompliant	Noncompliant	Magnitude of DO	
(WWTP Flamework & Watershed Flamework)	(kg/day)	Total	Days	Area	Depletion	
Increase Scenario 5e DO improvement	15,959	72%				
Scenario 5e	15,959	72%	Et a di a a a a	un estimation de		
Scenario 5d	20,717	63%		narios have ve	· ·	
WWTP-C & Watershed-G#	21,139	62%	outcome	s for meeting	standards	
WWTP-D & Watershed-H1	21,672	61%	T			
WWTP-D & Watershed-H2	22,089	61%				
WWTP-A & Watershed-G#	22,869	59%	Mill thore	ha mara than	one way to	
WWTP-B & Watershed-G#	22,869	59%	Will there be more than one way to			
WWTP-C & Watershed-F#	23,473	58%	achieve	standards in r	emaining	
Scenario 5c	24,678	56%	noncom	pliant model g	rid cells?	
WWTP-A & Watershed-F#	25,203	55%				
WWTP-B & Watershed-F#	25,203	55%				
WWTP-E & Watershed-G#	25,207	55%				
WWTP-D & Watershed-F#	25,207	51%				
Scenario 5b	27,682	51%				

Combo Scenario Results Plot a Course to Meet Standards

2006 Existing

63

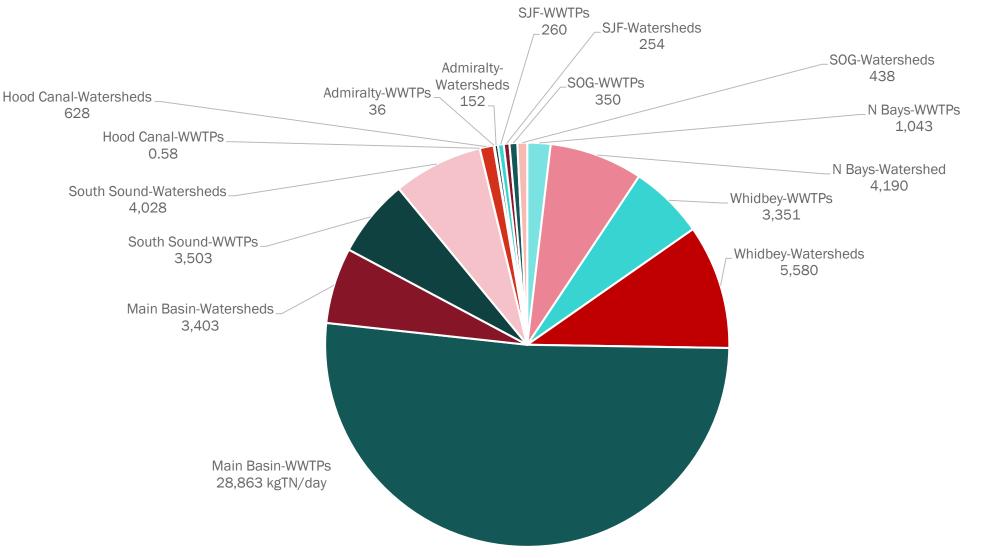
Questions? Please type your questions in the chat box to "All Panelists"

~ 5-10 minute break ~

Then a deep-dive into details

On Break

Be back at 00:00



Deep-Dive Into Details

2006 Existing Regional TN Load

Regional TN Load: 2006 Existing Anthropogenic TN Daily Load (kg/day)

WWTP Framework Load Calculation

- ✓Calculated for each WWTP
- ✓ Actual Effluent Flows
- ✓BNR level applied as a monthly average TN concentration

TN Load = Effluent flow x (BNR level)

 $Daily TN Load = \frac{Total Annual TN Load}{365}$

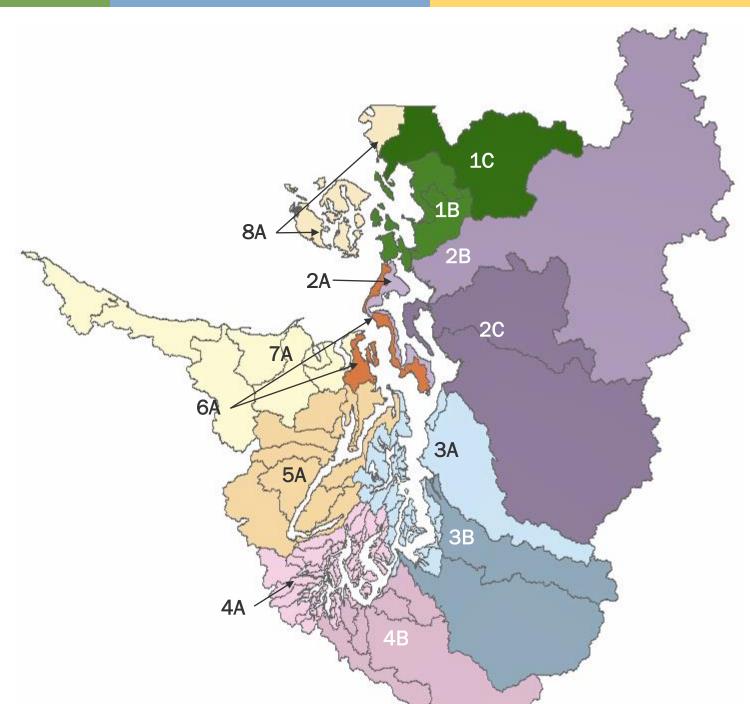
WWTP Type Categories

Dominant domestic wastewater treatment facility class under the NGP with a separate sewage and stormwater system Moderate domestic wastewater treatement facility class under the NGP with a combined sewage and stormwater system Moderate domestic wastewater treatement facility class under the NGP with a separate sewage and stormwater system Small domestic wastewater treatment facility class under the NGP Federally owned wastewater treatment facility Tribally owned wastewater treatment facility Private domestic wastewater treatment facility Industrial wastewater treatment facility Year2 Basins 70

Categorized by:

- Who the facility serves
- Nutrient General Permit size classification
- Combined vs separate storm and sewer systems

WWTP Framework Load Summary



Basin	Basin #	2006 Basin WWTP Avg. Daily TN Loads (kg/day)							
Basili	Existing WWTP TN Load Framework A Framework B Framework C		Framework C	Framework D	Framework E				
Bellingham, Samish, & Padilla Bays	1	1,043	500	504 441		441	603		
Whidbey Basin	2	3,351	2,314	2,122 1,962		1,962	2,297		
Main Basin	3	28,863	10,985	11,174	9,769	9,769	13,244		
South Sound	4	3,503	1,930	1,923	1,811	1,811	1,811		
Hood Canal	5	1	1	1	1	1	1		
Admiralty	6	36	36	36	36	36	36		
SJF - US	7	260	137	142	143	260	201		
SOG - US	8	350	300	301	310	350	348		
Regional WWTP TN Load		37,406	16,203	16,203	14,473	14,636	18,541		
Total Percent Reduction		-	56.6%	56.6%	61.2%	60.3%	50.4%		
Seasonal Biological Nitrogen Reduction Levels Tested		.		Cool= Remainder Warm= BNR5 Hot= BNR3	Cool= BNR8 Warm= BNR5 Hot= BNR3	Uses estimated maximum TN reductions for basins 1- 4 & cap WWTP loads in basins 5-8 at existing	Uses estimated maximum TN reductions for all basins but Combined systems at existing levels during cool months		
Description		Existing load that must be reduced Description		Estimated minimum that allows more load during cool months	Estimated maximum TN reduction	Improvement without WWTP reductions in basins 5-8	Cool season impact from Combined Storm/Sewer WWTPs		
Seasonality		-	Co	ool Months = Nov-Mar	Warm Months = Ap	or-Jun, Oct Hot Months	= Jul-Sep		

Watershed Categories

Basin	Basin #
Northern Bays (Bellingham, Samish, & Padilla)	1
Whidbey Basin	2
Main Basin	3
South Sound Basin	4
Hood Canal	5
Admiralty Inlet	6
Strait of Juan de Fuca (SJF)	7
Strait of Georgia (SOG)	8

Category	Watershed Average Daily TN Load (kg/day)
Small (A)	0-200
Medium (B)	201 – 1,000
Large (C)	1,001 - 4,000

Watershed Framework Load Summary

		2006 Basin Watershed Avg. Daily TN Loads (kg/day)								
Basin	Basin #	Evisting Materials at TNL and	Framework F#			Framework G#			Framework H#	
		Existing Watershed TN Load	F1	F2	F3	G1	G2	G3	H1	H2
Bellingham, Samish, & Padilla Bays	1	4,190	1,919	2,059	2,040	1,421	1,454	1,481	1,421	1,421
Whidbey Basin	2	5,580	2,491	2,673	2,081	1,845	1,945	1,538	1,845	1,845
Main Basin	3	3,403	1,556	1,669	1,653	1,152	1,236	1,201	1,152	1,152
South Sound	4	4,028	2,110	1,606	2,243	1,563	1,190	1,629	1,563	1,563
Hood Canal	5	628	395	424	420	292	314	305	292	628*
Admiralty	6	152	96	103	102	71	95	92	71	152*
Strait of Juan de Fuca - US	7	254	159	171	169	118	158	154	254*	254*
Strait of Georgia - US	8	438	275	295	292	204	273	265	438*	438*
Regional Watershed TN Load		18,673	9,000			6,666			7,036	7,453
Total Percent Reduction	n	-	51.8%			64.3%			62.3%	60.1%
Framework Variations		2006 Existing load from anthropogenic (point and nonpoint sources) in watersheds	 F1: Increased reductions in basins with biggest impact (1-4) F2: start with F1, with extra reduction in South Sound Basin F3: start with F1, with extra reduction in Whidbey Basin 			 G1: Increased reductions in basins with biggest impact (1-4) G2: start with G1, with extra reduction in South Sound Basin G3: start with G1, with extra reduction in Whidbey Basin 			 H1: Uses G1 for basins 1-6, but puts basins 7-8 at existing load H2: Uses G1 for basins 1-4 but puts basins 5-8 at existing load 	
Description		Existing load that reductions are based on	Estimated minimum TN load reduction with spatial variation			Estimated maximum load reduction with spatial variation			DO sensitivity the Straits, Ho and Admiralty	od Canal,

Watershed Framework F Detail

		Framework F# Basin Loads (units are Anthropogenic TN kg/day)											
Basin	Basin	F1: more reductions in basins 1-4 and for largest watersheds				F2: more reductions in basins 1-4 with extra South Sound Basin load reductions				F3: more reductions basins 1-4 with extra Whidbey Basin load reductions			
Dasiii	#	Percent Reduction from Existing		Total Basin Load	Percent Reduction from Existing			Total Basin	Percent Reduction from Existing			Total Basin	
		Sm*	Md*	Lg*	LUau	Sm*	Md*	Lg*	– Load	Sm*	Md*	Lg*	Load
Bellingham, Padilla, & Samish Bays	1	-	47.6%	56.3%	1,919	-	43.8%	53.2%	2,059	-	44.3%	53.6%	2,040
Whidbey	2	47.6%	47.6%	56.3%	2,491	43.8%	43.8%	53.2%	2,673	55.5%	62.9%	62.9%	2,081
Main	3	47.6%	-	56.3%	1,556	43.8%	-	53.2%	1,669	44.3%	-	53.6%	1,653
South Sound	4	47.6%	47.6%	-	2,110	55.0%	62.5%	-	1,606	44.3%	44.3%	-	2,243
Hood Canal	5	37.1%	-	-	395	32.6%	-	-	424	33.2%	-	-	420
Admiralty	6	37.1%	-	-	96	32.6%	-	-	103	33.2%	-	-	102
SJF-US	7	37.1%	-	-	159	32.6%	-	-	171	33.2%	-	-	169
SOG-US	8	37.1%	-	-	275	32.6%	-	-	295	33.2%	-	-	292
Total Load					9,000				9,000				9,000

*Watershed Load Size Category

Watershed Framework G Detail

		Framework G# (units are Anthropogenic TN kg/day)											
Basin	Basin #	G1: more reductions in basins 1-4 and for largest watersheds				G2: more reductions in basins 1-4 with extra South Sound Basin load reductions				G3: more reductions basins 1-4 with extra Whidbey Basin load reductions			
		Percent Reduction from Existing			Total Basin	Percent Reduction from Existing			Total Basin	Percent Reduction from Existing			Total Basin
		Sm*	Md*	Lg*	Load	Sm*	Md*	Lg*	Load	Sm*	Md*	Lg*	Load
Bellingham, Padilla, & Samish Bays	1	-	61.2%	67.7%	1,421	-	65.3%	65.3%	1,454	-	59.6%	66.3%	1,481
Whidbey	2	61.2%	61.2%	67.7%	1,845	58.7%	65.3%	65.3%	1,945	67.6%	67.6%	73.0%	1,538
Main	3	61.2%	-	67.7%	1,152	58.7%	-	65.3%	1,236	59.6%	-	66.3%	1,201
South Sound	4	61.2%	61.2%	-	1,563	66.7%	72.2%	-	1,190	59.6%	59.6%	-	1,629
Hood Canal	5	53.4%	-	-	292	50.0%	-	-	314	51.5%	-	-	305
Admiralty	6	53.4%	-	-	71	37.5%	-	-	95	39.3%	-	-	92
SJF-US	7	53.4%	-	-	118	37.5%	-	-	158	39.3%	-	-	154
SOG-US	8	53.4%	-	-	204	37.5%	-	-	273	39.3%	-	-	265
Total Load					6,666				6,666				6,666

*Watershed Load Size Category

Watershed Framework H Detail

Basin	Basin #	Watershed Framework H# (units are Anthropogenic TN kg/day)					
Bellingham, Padilla, & Samish Bays	1	H1: Framework G1 loads for basins 1-6; existing loads for	1,421	H2: Framework G1 loads for basins 1-4; existing loads for	1,421		
Whidbey	2	basins 7-8	1,845	basins 5-8	1,845		
Main	3		1,152		1,152		
South Sound	4		1,563		1,563		
Hood Canal	5		292		628*		
Admiralty	6		71		152*		
SJF-US	7		254*		254*		
SOG-US	8		438*		438*		
Total Load			7,036		7,453		

*Existing load for model year

What are we aiming for?

How do we know if a scenario's TN load will get us close to the target?

What about remaining areas of noncompliance?

Scenario 5 Details

Table 2. Scenario 5 combined reductions in watersheds and WWTPs

Scenario 5	Anthropogenic Watershed reductions*	WWTP reductions						
Scen5a	15%	Annual BNR8 at all WWTP (DIN = 8 mg/L, CBOD5 = 8 mg/L)						
Scen5b	40%	Annual BNR8 at all WWTP (DIN = 8 mg/L, CBOD 5= 8 mg/L)						
Scen5c	40%	 Seasonal BNR3 for WWTPs in South Sound, Main and Whidbey Basin: Apr - Oct: DIN = 3 mg/L; CBOD = 8 mg/L) Jan-Mar and Nov - Dec: DIN = 8 mg/L; CBOD = 8 mg/L Annual BNR at all other WWTP: DIN=8 mg/L; CBOD = 8 mg/L 						
Scen5d	40%	Annual BNR3 at all WWTP (DIN = 3 mg/L, CBOD = 8 mg/L)						
Scen5e	65%	Annual BNR3 at all WWTP (DIN = 3 mg/L, CBOD = 8 mg/L)						
These percent reductions are applied only to the anthropogenic portion of watershed nutrient loads i.e. the lifference between existing and estimated reference loads. For example, 15% means a 15% reduction in								

difference between existing and estimated reference loads. For example, 15% means a 15% reduction in existing anthropogenic loads (equivalent to 85% of existing anthropogenic loads). The percent reductions are also applied across all forms of nitrogen and organic carbon (ammonia, nitrate, dissolved and particulate organic nitrogen, and dissolved and particulate organic carbon).

Scenario 5 Predicted DO Noncompliance

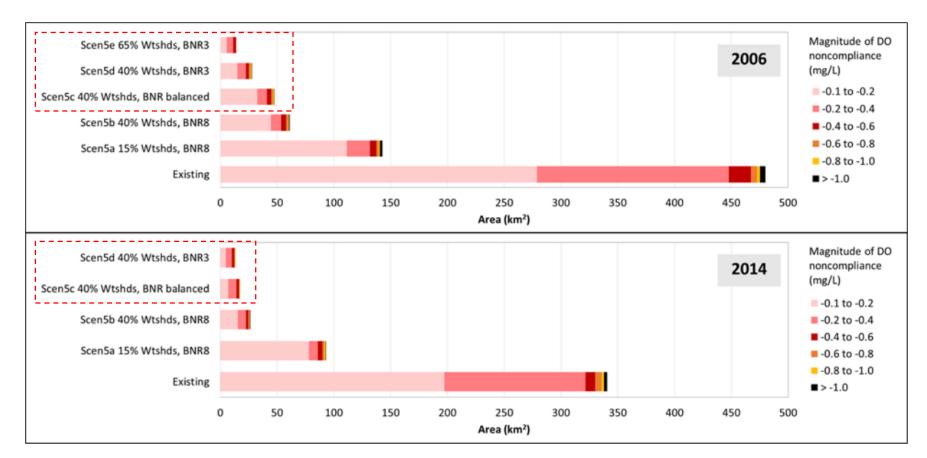
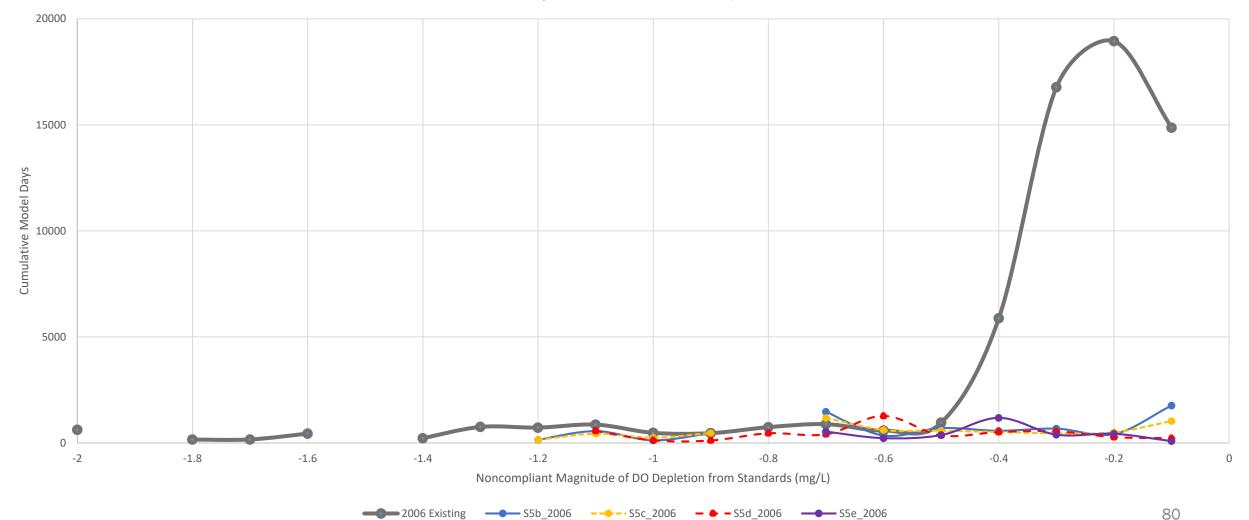
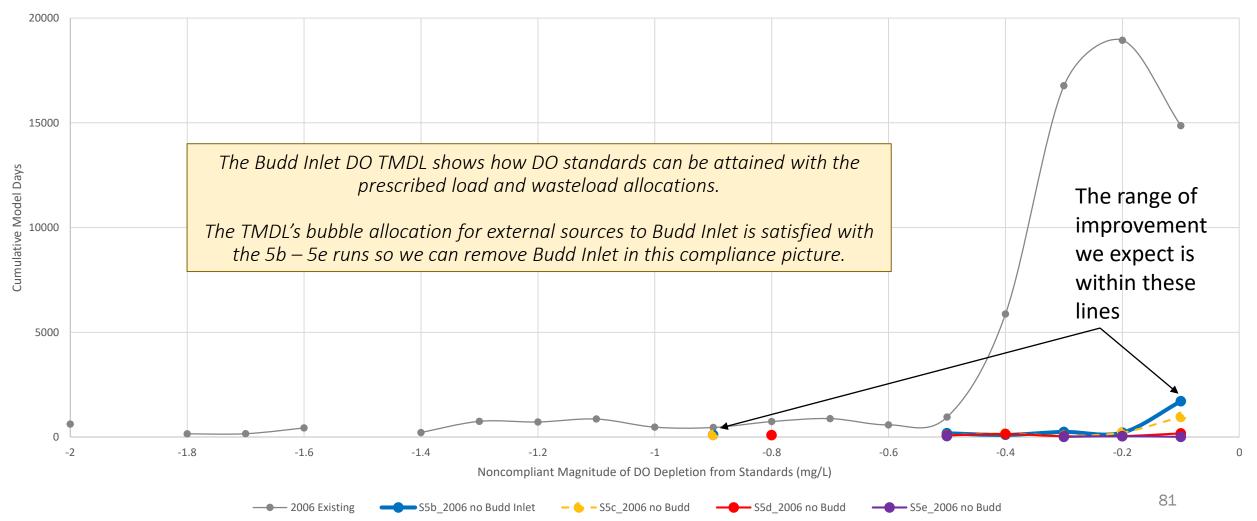



Figure 14. Distribution of magnitudes of predicted DO noncompliance within the total noncompliant area in WA waters of the Salish Sea across all Scenario 5 runs in 2006 (top) and 2014 (bottom).

Regional Look at Scenario 5 Results



Cumulative Frequency Distribution of 2006 Noncompliant Model Days and Magnitude of DO Depletion Below Standards (Existing compared to Scenarios 5b-5e)

Cumulative Frequency Distribution of 2006 Noncompliant Model Days and Magnitude of DO Depletion Below Standards (Existing compared to Scenarios 5b-5e excluding Budd Inlet)

Combo Scenario Results Plot a Course to Meet Standards

2006 Existing

82

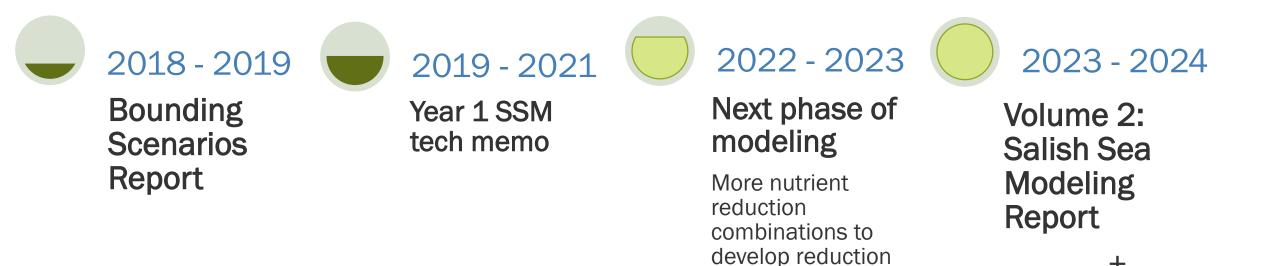
Thank you!

Please send your questions & feedback to:

Dustin Bilhimer Water Quality Program <u>Dustin.Bilhimer@ecy.wa.gov</u>

+

Reduction Plan


84

Puget Sound

Nutrient

Where we're going

Next phase of modeling: **defining the level of reduction needed** from all sources

targets

Future Forum Topics

► Watershed Nutrient Strategy

➢What's on the horizon for watershed nutrient modeling

More on the Puget Sound Nutrient Reduction Plan