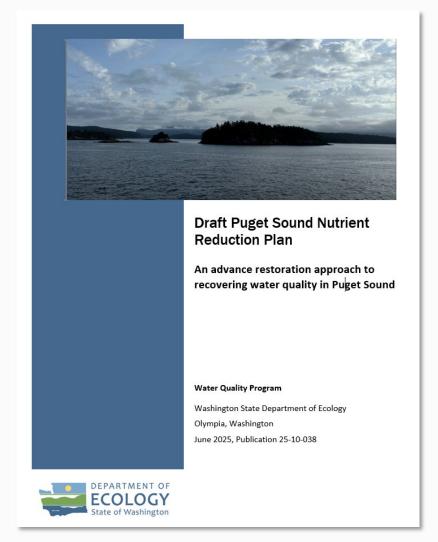


Puget Sound Nutrient Reduction Plan

Jeremy Reiman

June 24, 2025 - Nutrient Forum


Table of contents

- 1 Contents of plan
- 2 How to submit comments
- 3 Next steps
- 4 Questions

Puget Sound Nutrient Reduction Plan

- Our approach to reduce nutrient pollution → restore low DO levels by 2050
- Key Components
 - Targets for nutrient sources
 - Implementation tools
 - Accountability measures
- Advance Restoration Plan (ARP)

TMDL vs. ARP Comparison

Total Maximum
Daily Load
(TMDL)

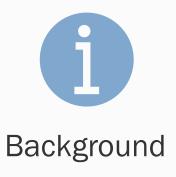
Statutory required elements

Category 4A

EPA approves

Meet Water

Quality Standards Elements for consideration with *flexibility*


EPA accepts

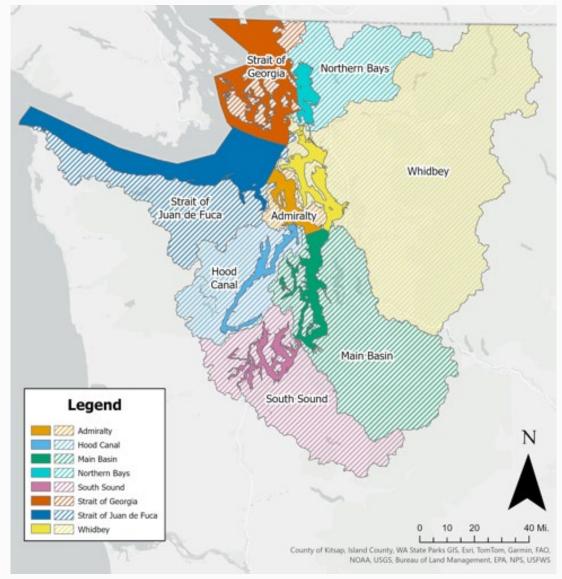
Category 5*

Advance Restoration Plan (ARP)

What's in the plan?

Financial Assistance

Schedule & Milestones


Monitoring

Adaptive Management

Scope of Plan

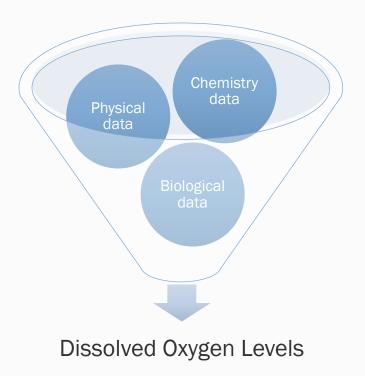
- Addresses all DO 303(d) (Cat 5) impairments in Puget Sound
- 8 basins
- Sets nutrient targets for:
 - Marine Point Sources
 - Watersheds
- No targets assigned to Canadian or open ocean sources

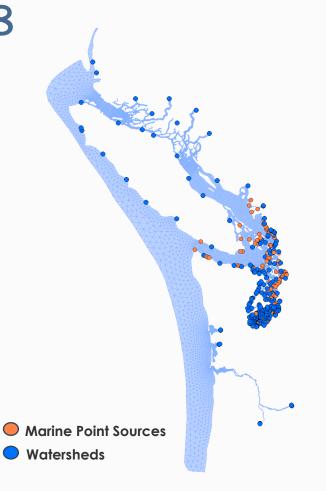
Two groups of targets

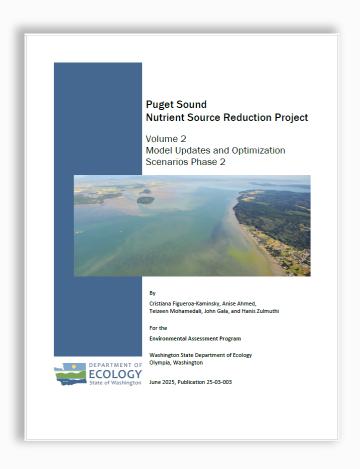
Marine Point Sources

- Municipal, Private, Federal, Tribal WWTPs
- Industrial Facilities

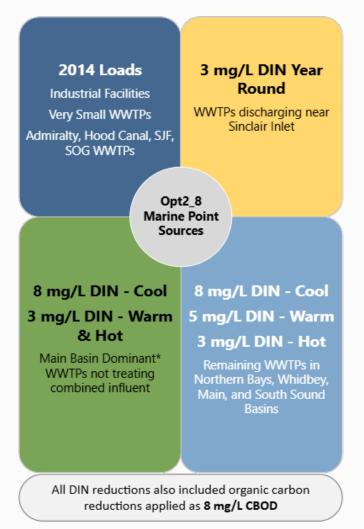
Watersheds

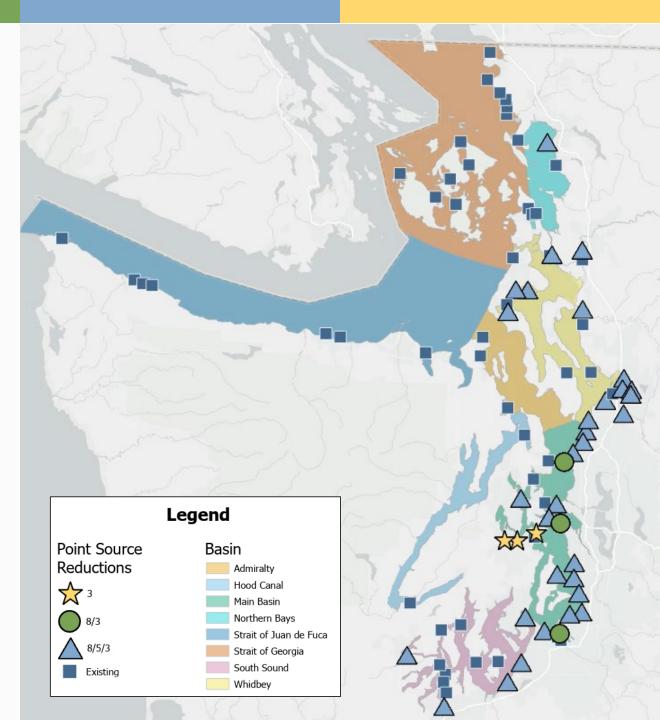

- Rivers/streams
 - Point and nonpoint sources
 - Shoreline stormwater point sources
 - Diffuse shoreline pollution (example: septic systems)



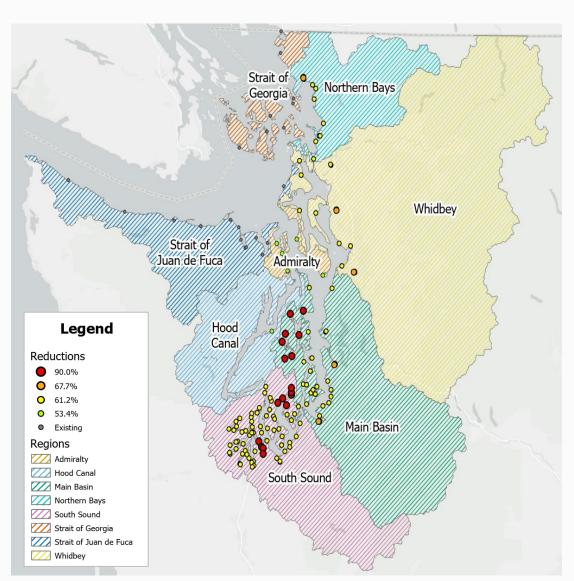

Model Scenario as Basis for Targets

Selected scenario: Opt2_8


Model Year: 2014



Marine Point Source Framework



Watershed Framework

- Applied to total nitrogen (TN) and total organic carbon (TOC)
- Anthropogenic loads

Basin(s)	Reduction in Anthropogenic TN and TOC Loads	
Northern Bays &	67.7% in large watersheds*	
Whidbey	61.2% in all other watersheds	
Main Basin	90% in watersheds draining to Sinclair & Dyes Inlet and Liberty Bay	
	67.7% in large watersheds*	
	61.2% in all other watersheds	
South Sound	90% in watersheds draining to Carr, Case, and Henderson Inlets	
	67.7% in large watersheds*	
	61.2% in all other	
Hood Canal	90% in watersheds draining to Lynch Cove	
	53.4% in all other watersheds	
Admiralty	53.4% in all watersheds	
Strait of Juan de Fuca &	No reductions	
Strait of Georgia		

^{*}Large watershed: >1000 kg TN/day

TN Targets (pg. 30)

Opt 2_8 model inputs → Targets Total Nitrogen - Basin level - Annual

Marine Point Source Targets (lbs. TN/yr) (Table 5)

Basin	Total Annual Target	Reduction Anthro TN*
Northern Bays	449,000	58%
Whidbey	1,130,000	63%
Main	6,300,000	72%
South Sound	898,000	66%
Hood Canal	823	0%
Admiralty	54,400	0%
Strait of Juan de Fuca	233,000	0%
Strait of Georgia	563,000	0%

^{*}Relative to 2014 loads

Watershed Targets (lbs. TN/yr) (Table 6)

Basin	Total Annual Target	Reduction Anthro TN*
Northern Bays	3,390,000	66%
Whidbey	11,900,000	67%
Main	4,330,000	68%
South Sound	2,940,000	63%
Hood Canal	1,030,000	66%
Admiralty	50,100	53%
Strait of Juan de Fuca	929,000	0%
Strait of Georgia	1,070,000	0%

^{*}Relative to 2014 loads

11

Targets: Additional Details

- Assumption: achieving TN targets
 achieving OC model inputs
- Marine targets include 3 facilities no longer discharging
- Watershed targets do not address upstream freshwater DO impairments
- Targets consistent with Budd Inlet TMDL bubble allocation

Implementation (pg. 40)

How will we achieve our targets?

Implementation Strategy Overview

Marine Point Sources

Establish numeric Water Quality Based Effluent Limits (WQBELs)

- Tools for achieving permit limits
 - Compliance schedules
 - Nutrient credit trading
 - Reclaimed water

Watersheds

Develop, and implement watershed prioritization strategies

- Water clean-up plans (TMDLs/STIs/ARPs)
- Addressing watershed point sources
- Nonpoint pollution control

Implementation - Marine Point Sources

- Targets will be used to inform numeric WQBELs
 - WWTPs and Industrial facilities
 - See Appendix H
- Technical Advisory Committee to support WQBEL development
 - William Weaver,
 William.weaver@ecy.wa.gov
- No new WWTP or industrial discharge into Puget Sound will be permitted unless targets can be met

Marine Point Source Targets (lbs. TN/yr) (Table 5)

Basin	Total Annual Target	Reduction Anthro TN*
Northern Bays	449,000	58%
Whidbey	1,130,000	63%
Main	6,300,000	72%
South Sound	898,000	66%
Hood Canal	823	0%
Admiralty	54,400	0%
Strait of Juan de Fuca	233,000	0%
Strait of Georgia	563,000	0%

Compliance schedules

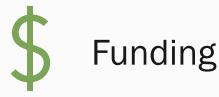
- "shortest reasonable amount of time necessary to achieve compliance"*
- Interim limits
- Step-wise progress

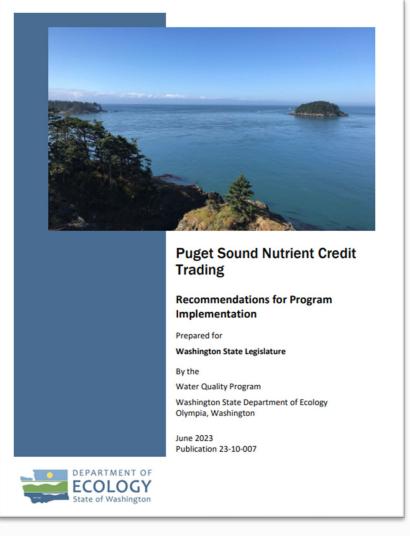
Nutrient Credit Trading (Water Quality Trading)

- A market-based approach to meeting water quality goals
- Assigns pollution reduction activities a "credit", which can be traded on a local market
- Goal: cost-effective alternative to meeting water quality goals
- Objective: facilitate exchanges of credits which can more quickly reduce pollution and clean-up waters

2023 Nutrient Credit Trading Legislative Report

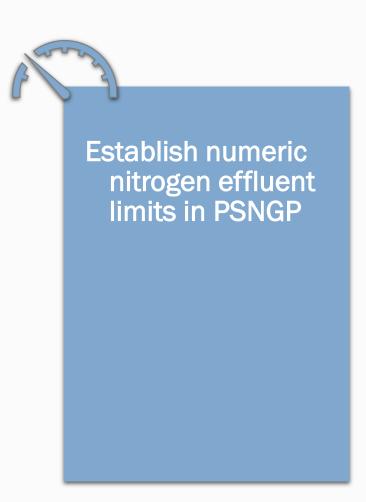
Recommendations


Program Structure



Statutory and Regulatory

Tribal and external party engagement


https://apps.ecology.wa.gov/publications/documents/ 2310007.pdf

2023 Legislative Report Next Steps

Request legislature funding

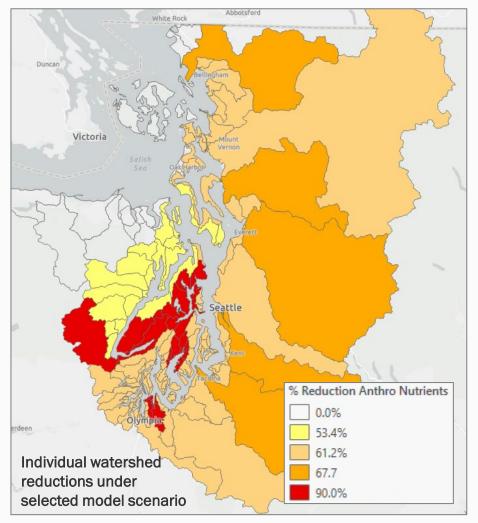
- Market feasibility analysis
- Develop formal outreach plans
- Technical research

Reclaimed Water

- Wastewater treated for safe re-use
 - Examples: Irrigation, industry
- Regulated by Ecology and WA Dept. of Health
- Reduce direct nitrogen loading
 - Effluent reduction (volume)
 - Nitrogen concentration reductions

Watershed Implementation

- Ecology regional offices will be drafting watershed prioritization strategies
 - Identify and prioritize water cleanup plans – target dates
 - Roadmap to achieve necessary permitted point source reductions
 - Nonpoint pollution control priority watersheds
- Adaptively managed ~ 25 years


Watershed Targets (lbs. TN/yr) (Table 6)

Basin	Total Annual Target	Reduction Anthro TN*
Northern Bays	3,390,000	66%
Whidbey	11,900,000	67%
Main	4,330,000	68%
South Sound	2,940,000	63%
Hood Canal	1,030,000	66%
Admiralty	50,100	53%
Strait of Juan de Fuca	929,000	0%
Strait of Georgia	1,070,000	0%

Water clean-up plans for watersheds

- Primary approach for achieving watershed targets
 - TMDL, ARP, Straight to Implementation (STI)
- Consistency with targets = meeting marine DO standards
- Regional offices prioritize cleanup plans annually
 - Policy 1-11
- Additional nutrient controls?

Permits in the Watersheds

- Future watershed clean-up plans will address permitted sources in watersheds
 - Nutrient allocations/targets → Permit limits (WQBELs)
 - Additional best management practices (BMPs)
- Additional monitoring may be necessary
- Permit action does not preclude clean-up plan development

Stormwater GP:

Municipal
Industrial
Construction

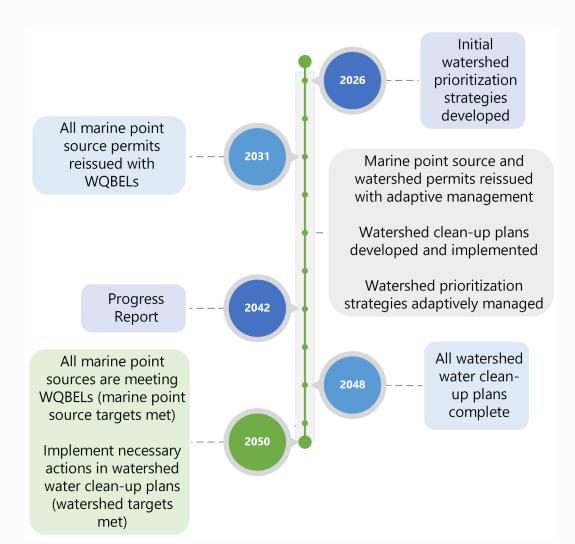
Nonpoint Pollution Control

- "The Nonpoint Plan"
- Voluntary Clean Water Guidance for Agriculture
 - Managing Nutrients
 - Transport and Treatment
- Future watershed prioritization strategies will describe nonpoint prioritization efforts

Financial Assistance (pg. 53)

- Grants and loans available to marine point source and watershed implementation
 - Wastewater planning, optimization, and upgrades
 - Nonpoint best management plan (BMP) implementation
 - Restoration
 - Conservation

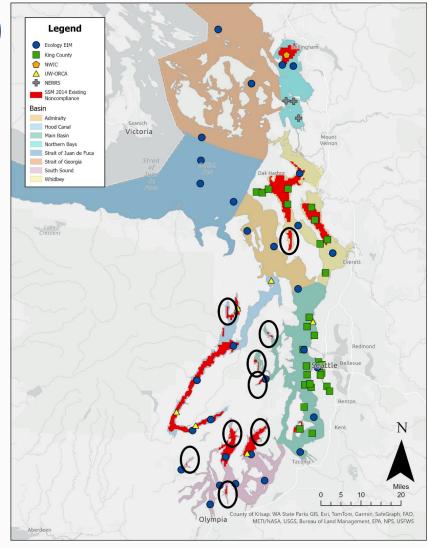
Ecology's Puget Sound Nutrient Reduction Grants Program


- Project scope: Planning, monitoring, and operational efficiencies to meet requirements of Puget Sound Nutrient General Permit
- Eligible entities: PSNGP permittees
- \$10 million for SFY 2025-2027

Ecology's Water Quality Combined Funding Program

- Grants and loan funding from 7 state/federal sources
- Project types: wastewater, stormwater, nonpoint BMPs, restoration, protection, monitoring, onsite sewage systems
- Eligible entities: local governments, Tribes, sewer districts
- Ranges from \$100-200 million

Schedule & Milestones (pg. 57)


- Measurable Milestones (Table 9)
 - Permits
 - Water clean-up plans
 - Progress reports 2042 & 2055
- Reoccurring Milestones (Table 10)
 - Permit coordination, review, updates
 - Nonpoint field staff work
 - Adaptive management

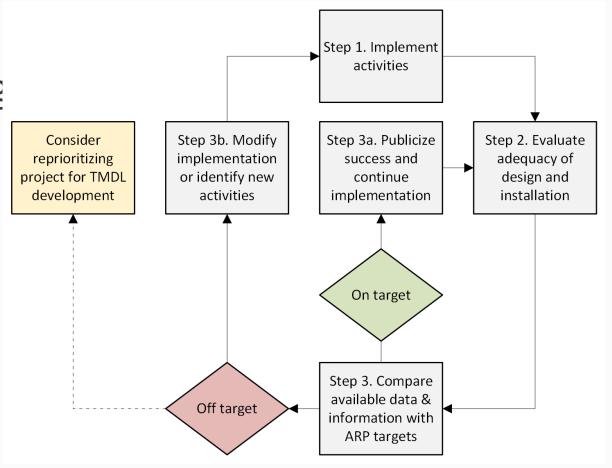
Effectiveness Monitoring (pg. 63)

- Evaluates existing efforts
- Recommendations for future efforts
- How we will use these data

- Primary types of monitoring
 - Marine point source nitrogen loads
 - Watershed nitrogen loads
 - Puget Sound dissolved oxygen
 - Inputs to Salish Sea Model
 - Implementation tracking

Examples of potential DO monitoring gaps in Puget Sound (Figure 12)

Other Monitoring Considerations


- Additional monitoring needed in some watersheds
- Collecting implementation data, before additional monitoring efforts
- Future Salish Sea Model runs to evaluate DO will need a variety of data
 - Progress reports in 2042 and 2055
- Other types of data helpful for understanding broader recovery
 - Algae blooms, sediment, benthic macroinvertebrates, biological

Adaptive Management (pg. 72)

- Strategic "trial and error"
- Is our implementation working
 - If not, what will we do about it?

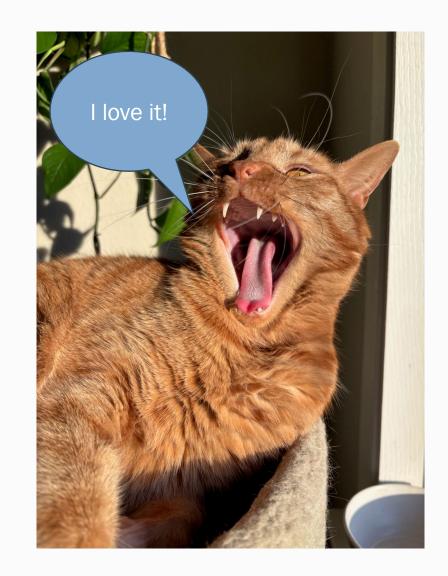
How to comment

Comments are due by 11:59 p.m. August 27, 2025

Comment online or by mail

- Comment online at: https://wq.ecology.commentinput.com/?id=9ruD7M5ie
- Send comments by mail to:

Jeremy Reiman Department of Ecology Water Quality Program PO Box 47600 Olympia, WA 98504-7600


• Due: August 27th, 2025

Helpful feedback

- Clear & specific
- Are there other reduction scenarios that may meet state water quality goals?
- Do you have ideas for setting WQBELs? (Appendix H)
- Are there other creative implementation tools we should consider?
- Are refined or additional milestones needed?

Next Steps

Next 25 years

Continue implementation of the plan!

July 2025

In-person Nutrient Forums

August 27, 2025

End of plan comment period

Fall 2025

Review comments and update plan

December 2025* anticipated

Transmit plan to EPA and publish response to comments

Next Steps

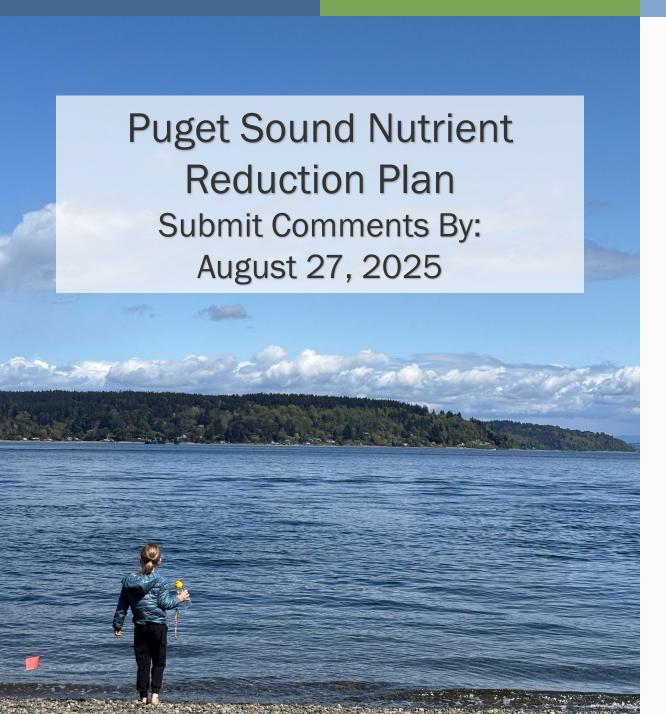
Next 25 years

Continue

Working with partners, interested parties, and Tribes

In-person Nutrient Forums

August 27, 2025


End of plan comment period

Fall 2025

Review comments and update plan

December 2025* anticipated

Transmit plan to EPA and publish response to comments

Thank you

Jeremy Reiman
Senior Environmental Planner

<u>Jeremy.reiman@ecy.wa.gov</u>

360-819-0197

Reducing Nutrients webpage