

Nutrient Attenuation in streams and rivers in the Puget Sound watershed

Rich Sheibley

Nutrient Advisory meeting – Aug 2018

U.S. Department of the Interior U.S. Geological Survey U.S. Geological Survey Washington Water Science Center Tacoma, Washington http://wa.water.usgs.gov

Background

- Issue Portions of South Puget Sound have dissolved oxygen (DO) levels that fall below Washington State water quality criteria.
- One cause of these conditions is excess nutrients which can promote algal growth.
- A big source of nutrients to Puget Sound is the marine waters that enter through the Strait of Juan de Fuca
- However, freshwater sources can contribute to the problem

Nutrient Loading from rivers and WWTPs

Mohamedali et al, 2011

Nutrient Loading from rivers and

WWTPs

Mohamedali et al, 2011

So, what can we do to reduce freshwater loads?

- Fortunately, nutrients are not conservative, they are biologically active and can be transformed and reduced during transport in surface waters
- Therefore, we can:
 - design WWTPs to enhance reduction of nutrients
 - design stream and river restoration projects to include consideration of nutrient processing.

Nutrient attenuation project

Goal: Determine what factors are important for nutrient attenuation in stream and rivers

Attenuation – a reduction in surface water nutrient load

- Conducted a literature review to identify
 - Conditions that lead to nutrient attenuation
 - What models are used to estimate nutrient attenuation in streams and rivers
- Applied a simple model to Puget Sound rivers and streams to identify high and low areas for attenuation

Nutrient attenuation project

- We developed a 'score card' to help identify what stream and river reaches will lead to enhanced attenuation.
- We focused on dissolved nutrients (nitrate+nitrite, ammonium, orthophosphate)
- These forms are readily taken up by algae and plants

Focus today will be on nitrogen

Factors related to nutrient attenuation

- There are physical, chemical, and biological factors that relate to enhanced attenuation of nutrients
- Often they interact with each other

Physical Factors

- Key question: How do we get nutrients into the sediment to be processed?
 - Overarching theme in the literature is if we can increase travel times through a reach, we can increase our chances of nutrient attenuation.
 - Contact time between surface water and sediments

Physical Factors

Stream flow

Higher flows will have shorter travel times

Velocity, width, and depth all interact and will influence travel times through the reach

Channel geometry

- Wide shallow channels vs. narrow deep channels width to depth ratio of the channel
- Influences the proportion of surface water in contact with sediments

Physical Factors – stream order

Lower order streams tend to be better at processing then higher order

- Many more 1st order streams in river networks then larger order streams
- More water contact with streambed

≥USGS

Alexander et. al, 2000

Physical Factors –floodplain connectivity

- A river that can interact with its floodplain the more opportunity for flood waters to reach areas of shallow topography and increased travel times
 - Denitrification rates higher in floodplain soils
 - Storm flows often carry high percent of annual nutrient loads
 - Channel confinement ratio, floodplain width to channel width (>3 unconfined)

Physical Factors – channel complexity

Physical Factors – Surface storage

Side pools, back waters, eddies

A. In-channel storage

- Hyporheic Zone area where groundwater and stream water exchange/mix
- Transient Storage in channel storage and hyporheic storage
 - Features that slow down the bulk flow of surface water

What features promote exchange?

Channel slope

Pool-riffle sequences

Sinuosity

Biological Factors – plants

Biological Factors – plants

- Plants and algae can slow down flow
- They can take up nutrients for growth
- AND.....

Biological Factors – plants

Chemical Factors

You need nutrients in order to process them Saturation kinetics

Concentration

Chemical Factors

Dissolved Oxygen

Denitrification is an anoxic process and net loss of nitrogen

Dissolved organic Carbon

Fine benthic organic matter

Temperature – a key factor for biological reactions

Don't forget.....watershed factors!

- Population
- Impervious surface, urban development
- Drainage basin size

$R = 1 - \exp(v_f/H_L)$

R = removal as fraction of inputs

 V_f = uptake velocity

 $H_L = Q/wL$

≥USGS

Can we estimate these for Puget Sound?

w=4.85*Qm^{0.48}/3.281

 $v_f = aC^b$

Takes into account saturation at high concentration

$v_{f} = 0.41[NO3]^{-0.39}$

Aguileria et. al, 2013

- Applied model to 17 major river drainages in Puget Sound
- Leveraged ongoing work at the time
 - Sub-watersheds were delineated
 - Detailed GIS information available
 - Channel widths, slopes, sinuosity

Model estimates

Hydrologic versus biologic controls

Upper watersheds biologic controls more important

Lower watersheds hydrologic controls more important

≥USGS

Developing a score card for attenuation

- We chose 4 primary factors related to attenuation
 - vf chemical/biological influence
 - Q/w specific discharge, indicates how much surface water in contact with streambed
 - Slope surface water slope for estimating exchange
 - Sinuosity another estimate of exchange potential

Developing a score card for attenuation

For each factor, determined break points to assign a score of 0 or 1

- Breakpoints based on local data, data from the literature or professional judgement
- Data for reach slope and sinuosity from Puget Sound Watershed Characterization project
 - Sample size was a little lower, but using real data as much as possible

What can we do moving forward?

First, preserve those areas that show high attenuation potential

- Small headwater streams
- Maintain important channel features
 - Large woody debris
 - Riparian vegetation
 - Channel complexity

What can we do moving forward?

- Restore function to channels where attenuation is low
 - Small headwater streams with high nutrient loads
 - Larger mainstem reaches
- Restoration activities can include
 - Large woody debris installation
 - Riparian vegetation replanting
 - Increasing substrate heterogeneity
 - Step-pool construction
 - Floodplain connectivity

What can we do moving forward?

- Restore function to channels where attenuation is low
 - Small headwater streams with high nutrient loads
 - Larger mainstem reaches

Reduce point and non-point nutrient sources

- Low impact development
- Healthy and intact riparian zones

Sound familiar?

Questions?

Sheibley, R.W., Konrad, C.P., and Black, R.W., 2015, Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington (ver. 1.1, February 2016): U.S. Geological Survey Scientific Investigations Report 2015–5074, 67 p.

http://dx.doi.org/10.3133/sir20155074

Rich Sheibley sheibley@usgs.gov

http://wa.water.usgs.gov

