Nutrient loading into Puget Sound and the Salish Sea Model

Puget Sound Nutrient Forum
May 30, 2018

Teizeen Mohamedali, P.E.

With contributions from:
Anise Ahmed, Cristiana Figueroa-Kaminsky, John Gala, Sheelagh McCarthy, Greg Pelletier, and Sandy Weakland
Why estimate nutrient loading?

- Various forms of inorganic and organic nitrogen and carbon lead to algal blooms and increase organic material availability

- Excess nutrients contribute to:
  - eutrophication
  - oxygen depletion
  - acidification

- Allows us to quantify relative magnitude of sources and evaluate timing of nutrient delivery

- Allows us to perturb conditions and change nutrient loading for model scenarios to evaluate effect on water quality
Why is oxygen important?

• Marine organisms need certain levels of oxygen to survive and thrive

• Puget Sound is already susceptible to low DO due to:
  o Bathymetry and circulation patterns
  o Low oxygen, nutrient rich water from the Pacific Ocean

• Future stressors will make conditions more acute → climate change, population growth

• Cascade of effects can happen when DO is low – even if conditions are not immediately lethal to fish e.g. to benthic organisms
Benthic organisms and the Benthic Index

• Ecology’s sediment monitoring team measures benthic organism assemblages:
  o Abundance
  o Diversity

• Calculation of the benthic index – determines whether benthos are adversely affected or unaffected

**Benthic Index**
- ● Adversely affected
- ○ Unaffected

• Those “adversely affected” can be due to **any kind of stressor**

• Our sediment scientists suspect changes in biogeochemistry may be responsible for adversely affected benthos
Areas where benthic communities are adversely affected correspond to areas where model predicts lower DO.

Model output from 2006 - minimum DO in the bottom layer.

Slide adapted from Sandy Weakland (Ecology’s Sediment monitoring team)
Nutrient sources and pathways

Focus of this presentation is on rivers and wastewater loads estimates

Rivers include all upstream point and nonpoint nutrient sources in the watershed

Rivers loads represent loading at the mouth
Nutrient sources and pathways

- Pacific Ocean contributes the largest nitrogen load to the sound
- Driven by larger oceanic and global processes
Oceanic exchange
Ocean exchange

All flow values are for the year 2006 from Khangaonkar et al., 2017
Ocean exchange

98% of nitrogen in outgoing water is of oceanic origin
(Davis et al., 2014)

60-66% of surface outflow is refluxed back
(Khangaonkar et al. 2017, Ebbesmeyer & Barnes 1980)

Pacific Ocean

Strait of Juan de Fuca

Puget Sound

Admiralty Inlet

river flows
Ocean exchange

Strait of Juan de Fuca

River flows

Most oceanic nutrient load leaves

Most terrestrial nutrient load likely stays within Puget Sound
Questions we can answer:

- What proportion of modeled effects are caused by human activities?
- How will conditions change in the future (climate change, population growth)?
- How much do potential nutrient reductions improve water quality?

161 river and streams
- Rivers and streams entering Puget Sound, the Straits and the Pacific Ocean
- Higher spatial resolution in South & Central Puget Sound

99 point sources
- All facilities with marine outfalls
- 78 U.S. WWTPs
- 9 Canadian WWTPs
- 10 industrial facilities
Calculating load:

Load = Flows x Concentrations

<table>
<thead>
<tr>
<th>Source</th>
<th>Flow</th>
<th>DIN Conc.</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stillaguamish River</td>
<td>130 m³/s</td>
<td>0.20 mg/L</td>
<td>2,250 kg/day</td>
</tr>
<tr>
<td>Tacoma Central WWTP</td>
<td>1.0 m³/s</td>
<td>24.2 mg/L</td>
<td>2,090 kg/day</td>
</tr>
</tbody>
</table>

2016 annual average estimates

DIN = Dissolved Inorganic Nitrogen
2006 vs. 2014 river flows into Puget Sound

- Spring 2014 streamflow > spring 2006 streamflow
- Spring 2014 nutrient loads > spring 2014 loads
- Flows affect residence times between these two years
- River influence on oxygen levels in Puget Sound (relative to WWTPs) was greater in 2014 than in 2006
Wastewater flows over time

1999-2017 WWTP monthly flows into different regions of Puget Sound

No noticeable increases in wastewater flow despite population growth
Success story in water efficiency

- Seattle Public Utilities 1% Water Conservation Program started in 2000
- Includes reductions due to indoor + outdoor use
- Reductions in inflow/infiltration
- Reduced per capita indoor water use \( \rightarrow \) reduces per capita wastewater flows
- 2015 USGS report: per capita water use is between 76-108 MGD for counties in Puget Sound
- Have we saturated our ability to conserve water?

Water consumption by jurisdictions served by Seattle Public Utilities

Source: Saving Water Partnership 2010 annual report, Seattle Public Utilities (2011)
River and wastewater concentrations

Multiple linear regression used to predict daily concentrations using daily USGS flow data and monthly concentration data

Nitrate + Nitrite concentration for the Puyallup River
Dissolved Inorganic Nitrogen (DIN) loads in kg/day: 1999-2017 annual averages
Organic Carbon (DOC) **loads** in kg/day: 1999-2017 annual averages

- **Rivers**:
  - Stillaguamish R
  - Nooksack R
  - Skagit R
  - Snohomish R
  - Iona
  - Annacis
  - Fraser R
  - Nisqually R
  - Green R
  - Puyallup R
  - West Point
  - South King
  - Lake Washington/Ship Canal

- **Wastewater**: Levels range from 0 - 10, 10 - 100, 100 - 1,000, 1,000 - 5,000, 5,000 - 10,000, and > 10,000.
Seasonal differences in dissolved inorganic nitrogen loads

**Annual average:**
- WWTP: 30,540 kg/day
- Rivers: 25,240 kg/day

**Annual DIN load contribution:**
- Puget Sound - WWTPs: 45%
- Puget Sound - Rivers: 55%

**Summer DIN load contribution:**
- Puget Sound - WWTPs: 21%
- Puget Sound - Rivers: 79%
Seasonal differences in dissolved organic carbon loads

Annual average:
- WWTP: 11,450 kg/day
- Rivers: 211,140 kg/day

Annual DOC load contribution:
- 95%
- 5%

Summer DOC load contribution:
- 92%
- 8%
Reference Conditions

Reference Condition = nutrient loading in the absence of regional anthropogenic nutrient sources

- no change in ocean inputs
- no change in Canadian inputs
- U.S. WWTP effluent removed (flow on)
- U.S. river nutrient inputs reduced to estimate reference concentrations (no change in flow)

Published in Mohamedali et. al. (2011), updated in Pelletier et. al. (2017, Appendix B), estimates may be refined further in 2018-2019
In 2008, Puget Sound wide, an estimated 75% of the terrestrial DIN load to Puget Sound was from human sources.
In 2008, Puget Sound wide, an estimated 78% of the terrestrial TON load to Puget Sound was from human sources.
In 2008, Puget Sound wide, an estimated 16% of the terrestrial TOC load to Puget Sound was from human sources.
Reference Conditions

Reference condition (no people)

Published in Mohamedali et. al. (2011),
updated in Pelletier et. al. (2017, Appendix B),
estimates may be refined further in 2018-2019

Current loading

Future loading: more people, different climate

Published in Mohamedali et. al. (2011)

Future wastewater load

Published in Roberts et. al. (2012), may update future estimates depending on funding availability
Future point and nonpoint source loading

Annual average DIN loading estimates from point and nonpoint sources into Puget Sound (south of Admiralty Inlet)

Key assumptions:
- OFM 2012 ‘medium’ population projections
- No change in WWTP treatment processes/technologies or per capita wastewater flow, no new facilities
- Future hydrology from UW Climate Impacts Group VIC model based on downscaled IPCC AR4 A/B emissions scenarios
- Future nitrogen nonpoint source concentrations are only a function of empirical relationships to land use
- Future land use based on a ‘status quo’ of current land use trends in the region

Published in Roberts et. al. (2012)
Conclusions

• **Status quo oxygen levels are below thresholds for a thriving marine ecosystem**

• **Pacific Ocean:**
  - Future conditions are highly uncertain and may change: incoming temperature, oxygen and nutrient levels, timing and duration of upwelling events
  - While highly influential, we are limited in our ability to manage these changes

• **Dynamic variation in time and space is important**
  - Spatial and temporal variability in flows/loads means that impact is nuanced
  - [Salish Sea model allows us to evaluate the impact](#)

• **Extent of human influence**
  - Model scenarios allow us to compare existing, reference, and future scenarios based on change in nutrient loading and assess impact on DO levels
  - Reducing local nutrient sources will build resiliency for future that is likely worse than today with the stressors of climate change and population growth
Next Steps

• **Bounding Model runs** – to show us the potential gains of nutrient reduction:
  o All rivers set to reference condition nutrient loads
  o All wastewater facilities upgrade to higher nutrient removal
  o All facilities are at their design flows w/ and w/out nutrient removal
  o Only the largest wastewater facilities upgrade to higher nutrient removal
  o Combinations of the above scenarios

• **Additional monitoring** – some funding dependent
  o Freshwater monitoring - continuous monitoring of nitrate/nitrite at a few major Puget Sound rivers and monitoring for organic N and organic C during specific rain events
  o Marine monitoring – particulate and total organic carbon, alkalinity and DIC, respiration rates
  o Sediment monitoring – measurement of biogeochemical fluxes, already begun as a pilot

• **Future Scenarios (also funding dependent)** – updating future nutrient loading estimates under climate change and population growth
Questions?

For more information:
Ecology webpage for the Salish Sea Model: https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/Modeling-the-environment/Salish-Sea-modeling (includes links to all model related publications)
Pacific Northwest National Laboratory webpage for the Salish Sea Model: https://salish-sea.pnnl.gov/
Nitrogen in Puget Sound - A Story Map: https://waecy.maps.arcgis.com/apps/MapSeries/index.html?appid=907dd54271f44aa0b1f08efd7efc4e30

Contacts:
Teizeen Mohamedali: tmoh461@ecy.wa.gov
Cristiana Figueroa-Kaminsky: cfig461@ecy.wa.gov