### Nutrient loading into Puget Sound and the Salish Sea Model

### **Puget Sound Nutrient Forum**

May 30, 2018

Teizeen Mohamedali, P.E.

With contributions from: Anise Ahmed, Cristiana Figueroa-Kaminsky, John Gala, Sheelagh McCarthy, Greg Pelletier, and Sandy Weakland



# Why estimate nutrient loading?



- Various forms of inorganic and organic nitrogen and carbon lead to algal blooms and increase organic material availability
- Excess nutrients contribute to:
  - o eutrophication
  - o oxygen depletion
  - $\circ$  acidification
- Allows us to quantify relative magnitude of sources and evaluate timing of nutrient delivery
- Allows us to perturb conditions and change nutrient loading for model scenarios to evaluate effect on water quality

# Why is oxygen important?

- Marine organisms need certain levels of oxygen to survive and thrive
- Puget Sound is already susceptible to low DO due to:
  - Bathymetry and circulation patterns
  - Low oxygen, nutrient rich water from the Pacific Ocean
- Future stressors will make conditions more acute  $\rightarrow$  climate change, population growth
- Cascade of effects can happen when DO is low even if conditions are not immediately lethal to fish e.g. to benthic organisms

### Benthic organisms and the Benthic Index



- Ecology's sediment monitoring team measures benthic organism assemblages:
  - Abundance
  - Diversity
- Calculation of the **benthic index** determines whether benthos are adversely affected or unaffected

#### Benthic Index

- Adversely affected
- Unaffected
- Those "adversely affected" can be due to any kind of stressor
- Our sediment scientists suspect changes in biogeochemistry may be responsible for adversely affected benthos



Areas where benthic communities are adversely affected correspond to areas where model predicts lower DO



# Nutrient sources and pathways



- Focus of this presentation is on rivers and wastewater loads estimates
- Rivers include all upstream point and nonpoint nutrient sources in the watershed
- Rivers loads represent loading at the mouth

# Nutrient sources and pathways



- Pacific Ocean contributes the largest nitrogen load to the sound
- Driven by larger oceanic and global processes

# Oceanic exchange





All flow values are for the year 2006 from Khangaonkar et al., 2017

### Ocean exchange river flows 98% of nitrogen in outgoing water is of oceanic origin Admiralty (Davis et al., 2014) Inlet Strait of Juan de Fuca 60-66% of surface Pacific Ocean **Puget Sound** outflow is refluxed back (Khangaonkar et al. 2017, Ebbesmeyer & Barnes 1980)



#### Questions we can answer:

- What proportion of modeled effects are caused by human activities?
- How will conditions change in the future (climate change, population growth)?
- How much do potential nutrient reductions improve water quality?

wastewater inputriver input



**River and wastewater inputs** 

### 161 river and streams

- Rivers and streams entering Puget Sound, the Straits and the Pacific Ocean
- Higher spatial resolution in South & Central Puget Sound

### 99 point sources

- All facilities with marine outfalls
- 78 U.S. WWTPs
- 9 Canadian WWTPs
- 10 industrial facilities

# **Calculating load:**

# Load = Flows x Concentrations

DIN = Dissolved Inorganic Nitrogen

| Source              | Flow                  | DIN Conc. | Load         |
|---------------------|-----------------------|-----------|--------------|
| Stillaguamish River | 130 m <sup>3</sup> /s | 0.20 mg/L | 2,250 kg/day |
| Tacoma Central WWTP | 1.0 m <sup>3</sup> /s | 24.2 mg/L | 2,090 kg/day |

2016 annual average estimates

# 2006 vs. 2014 river flows into Puget Sound



### Wastewater flows over time



#### 1999-2017 WWTP monthly flows into different regions of Puget Sound

No noticeable increases in wastewater flow despite population growth

# Success story in water efficiency

- Seattle Public Utilities 1% Water Conservation Program started in 2000
- Includes reductions due to indoor + outdoor use
- Reductions in inflow/infiltration
- Reduced per capita indoor water use → reduces per capita wastewater flows
- 2015 USGS report: per capita water use is between 76-108 MGD for counties in Puget Sound
- Have we saturated our ability to conserve water?





Source: Saving Water Partnership 2010 annual report, Seattle Public Utilities (2011)

### **River and wastewater concentrations**





#### Wastewater **Rivers** 0 - 10 10 - 100 lona Fraser R 100 - 1,000 1,000 - 5,000 Annacis 5,000 - 10,000 Nooksack R > 10,000 Skagit R West Point 5 Stillaguamish R South King Green R Snohomish R

Dissolved Inorganic Nitrogen (DIN) loads in kg/day: 1999-2017 annual averages



#### Organic Carbon (DOC) loads in kg/day: 1999-2017 annual averages



### Seasonal differences in dissolved inorganic nitrogen loads



### Seasonal differences in dissolved organic carbon loads



# **Reference Conditions**



### 2008 anthropogenic vs. reference dissolved inorganic nitrogen loads to Puget Sound



### 2008 existing vs. reference total organic nitrogen loads to Puget Sound



### 2008 anthropogenic vs. reference total organic carbon loads to Puget Sound



# **Reference Conditions**



Published in Roberts et. al. (2012), may update future estimates depending on funding availability

# Future point and nonpoint source loading



#### Key assumptions:

- OFM 2012 'medium' population projections
- No change in WWTP treatment processes/technologies or per capita wastewater flow, no new facilities
- Future hydrology from UW Climate Impacts Group VIC model based on downscaled IPCC AR4 A/B emissions scenarios
- Future nitrogen nonpoint source concentrations are only a function of empirical relationships to land use
- Future land use based on a 'status quo' of current land use trends in the region

### Conclusions

- Status quo oxygen levels are below thresholds for a thriving marine ecosystem
- Pacific Ocean:
  - Future conditions are highly uncertain and may change: incoming temperature, oxygen and nutrient levels, timing and duration of upwelling events
  - While highly influential, we are limited in our ability to manage these changes
- Dynamic variation in time and space is important
  - Spatial and temporal variability in flows/loads means that impact is nuanced
  - Salish Sea model allows us to evaluate the impact

### • Extent of human influence

- Model scenarios allow us to compare existing, reference, and future scenarios based on change in nutrient loading and assess impact on DO levels
- Reducing local nutrient sources will build resiliency for future that is likely worse than today with the stressors of climate change and population growth

# **Next Steps**

- **Bounding Model runs** to show us the potential gains of nutrient reduction:
  - All rivers set to reference condition nutrient loads
  - All wastewater facilities upgrade to higher nutrient removal
  - All facilities are at their design flows w/ and w/out nutrient removal
  - Only the largest wastewater facilities upgrade to higher nutrient removal
  - Combinations of the above scenarios

### • Additional monitoring – some funding dependent

- Freshwater monitoring continuous monitoring of nitrate/nitrite at a few major Puget Sound rivers and monitoring for organic N and organic C during specific rain events
- Marine monitoring particulate and total organic carbon, alkalinity and DIC, respiration rates
- Sediment monitoring measurement of biogeochemical fluxes, already begun as a pilot
- Future Scenarios (also funding dependent) updating future nutrient loading estimates under climate change and population growth

# **Questions**?

### For more information:

Ecology webpage for the Salish Sea Model: <u>https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/Modeling-the-environment/Salish-Sea-modeling</u> (includes links to all model related publications)

Pacific Northwest National Laboratory webpage for the Salish Sea Model: https://salish-sea.pnnl.gov/

Nitrogen in Puget Sound - A Story Map: https://waecy.maps.arcgis.com/apps/MapSeries/index.html?appid=907dd54271f44aa0b1f08efd7efc4e30

#### Contacts:

Teizeen Mohamedali: <u>tmoh461@ecy.wa.gov</u> Cristiana Figueroa-Kaminsky: <u>cfig461@ecy.wa.gov</u>



