How Stormwater Bioretention Captures PCBs

Richard Jack, King County

This study was funded by Western WA MS4 permittees through pooled resources monitoring requirements in Ecology's Phase I and II permits

PCBs - What are they?

- Banned in 1977 but remain in many existing in-use materials
- 209 different forms called congeners
 - Homologs are groups of PCBs with the same of chlorine atoms
 - E.g. There are 31 different pentachlorinated PCB congeners all having 5 chlorines, while there are 23 different trichlorinated PCB congeners each containing 2 chlorines.
 - PCB Congeners are often grouped by homolog group as they often behave similarly
- Semi-volatile
- Attracted to organic carbon; dis-like being dissolved in water

Why do we care?

- Highly toxic
- Responsible for most Washington fish advisories
 - High toxicity while highly bioaccumulative = very low water quality standard of 7 pg/L (parts per quadrillion)
- Raise awareness about the need to validate stormwater management BMPs for PCBs in general
- If year over year PCB capture remains high, at what point might bioretention facilities become dangerous waste?
- If year over year PCB capture is not as high, will bioretention be effective at interrupting urban cycling of PCBs before they reach waterbodies?

Why are PCBs in runoff in the first place aren't they banned?

Bioretention Soils Effectiveness Questions?

- What is the PCB removal (capture) rate in BSM, and does it vary by congener? (within one storm)
- What is the wet season PCB sequestration (retention over multiple storm events) in BSM, and does this vary by congener?
- What is the PCB retention in BSM during the dry season, and does it vary by congener?

Mesocosm scale study using I-5 runoff

Mesocosms setup in triplicate

- 55 gallon stainless steel drums
- Gravel plus 18 inches of 60:40 (Sand:Compost) BSM
 - ~3 inches of wood chip mulch
- Pacific Ninebark in 3, while 3 had no plants
 - Note: Bare root Ninebarks were very small to start
- 20:1 impervious surface to infiltration area design ratio

Data collected over 25 months

- Although paired with USFW/WSU studies addressing toxicity and fungi, this investigation only used the "Soil Only" and "Soil Plus Plants" mesocosms
- Quarterly soil samples
 - Composite cores
- Quarterly storm samples
 - 2 hour composites

• Flow

Effectiveness

Treatment effectiveness

- BSM is highly effective at removing PCBs
 - Effluent does not meet 7 pg/L water quality standard, but vastly improved
 - Plants not important
 - No change in effectiveness over 25 months
- Treatment efficacy is high across all congener groups

PCB Homolog Group	mean influent pg/L	mean effluent pg/L	mean % removal via BSM
1	0.8	0.1	90.4
2	67.2	13.5	79.5
3	209.8	5.0	96.1
4	743.5	47.5	90.6
5	1097.6	126.6	86.1
6	1144.1	95.8	88.8
7	316.6	31.1	88.2
8	57.2	5.8	72.2
9	11.6	<0.0	99.9+
10	4.8	1.4	37.3*
Sum of all homologs	3,653	184	90.7

Water loadings

- ~50 µg PCBs load over 2 years
- About 3.5 µg exported over 2 years
- Vast majority of PCBs are sequestered in BSM
- Is this accumulation going to be a problem?

Soil accumulation?

- Potentially relevant *decline* in soil PCB concentrations over time
- ~10 µg/Kg is 1% of the 1 mg/Kg regulatory threshold for PCBs in soils
- Accumulation to regulated levels would take 100s of years

Effectivenes: Study

So where do the PCBs go?

- High capture rate
- Don't appear to be accumulating suggests one of two options (or a little of both)
 - 1) They're offgassing
 - 2) They're degrading
- Study wasn't sufficiently powered or capable of distinguishing these
 - BSM environment is highly biologically active
 - PCB loads are small enough to not be limiting the growth of degrading organisms
 - White rot fungi were abundant and some strains are known PCB degraders
- Bench scale tests with labelled PCB congeners would be an appropriate strategy to examine these options

Bioretention Soils Study Answers?

• What is the PCB removal (capture) rate in BSM, and does it vary by congener?

High! BSM makes significant progress towards WQS

 If year over year PCB capture remains high, at what point might bioretention facilities become dangerous waste?

Not for 100s of years

• Are PCBs just recycling from BSM back into the urban environment? **Probably degrading, but needs more study**

Richard Jack <u>Richard.jack@kingcounty.gov</u> 206-477-4715 Water and Land Resources Division King County Department of Natural Resources and Parks

