

TECHNICAL MEMORANDUM

Date: October 16, 2025

To: Jessica Atlakson, City of Redmond

From: John Lenth, Herrera Environmental Consultants, Inc.

Meghan Mullen, Herrera Environmental Consultants, Inc.

Subject: Tosh Creek Street Sweeping Study: Final Report

Contents

Acknowledgements	iv
Introduction	1
Experimental Design	2
Watershed Selection Rationale	2
Street Sweeping Program	2
Sampling and Data Analysis Procedures	3
Results	10
Sampling Event Summary	11
Concentration and Detection Frequency Summary	13
Statistical Analysis Results	16
Mann-Whitney and Kruskal-Wallis Test Results	16
Mixed Model Results	20
Discussion	22
Conclusions	25
References	26

Appendices

Appendix A	Data Validation Memorandum
Appendix B	Tabular Summary Statistics for 6PPD-quinone and Polycyclic Aromatic Hydrocarbons
Appendix C	Box Plots for 6PPD-quinone and Polycyclic Aromatic Hydrocarbons
Appendix D	Tabular Summary Statistics for Total Suspended Solids, Total Copper, and Particulate Copper
Appendix E	Box Plots for Total Suspended Solids, Total Copper, and Particulate Copper
Appendix F	Mann-Whitney U Test Results
Annendix G	Kruskal-Wallis Test Results

Tables

Table 1.	Watershed Study	4
Table 2.	Sampling Dates for Street Sweeping Study in Tosh Creek and Country Creek Watersheds.	11
Table 3.	Summary Statistics for 6PPD-quinone (ng/L) by Station and Sampling Event Type	13
Table 4.	Summary Statistics for Total Suspended Solids (mg/L) by Station and Sampling Event Type.	15
Table 5.	Summary Statistics for Total Copper (ug/L) by Station and Sampling Event Type	15
Table 6.	Summary Statistics for Particulate Copper (ug/L) by Station and Sampling Event Type.	16
Table 7.	Mann-Whitney U Test Results.	17
Table 8.	Mixed Model Comparison	21
Table 9.	Selected Mixed Model Summary for 6PPD-quinone, Total Suspended Solids, and Particulate Copper	22
Table 10.	Traffic Count Data Within and Near the Tosh and Country Creek Watersheds	24

ii

Figures

Figure 1.	Application, Reference, and Control Watersheds	5
Figure 2.	Tosh Creek Paired Watershed Study Monitoring Locations	7
Figure 3.	Country Creek Paired Watershed Study Monitoring Locations	8
Figure 4.	Suspended Solids Concentrations Measured at the TOSMO Station During Storm Events Across Street Sweeping Treatments	18
Figure 5.	Suspended Solids Concentrations Measured at the COUMI Station During Storm Events Across Street Sweeping Treatments	19
Figure 6.	Total Copper Concentrations Measured at the COUMI Station During Storm Events Across Street Sweeping Treatments	19

Acknowledgements

This project is funded in part by the King County Wastewater Treatment Division. The content herein does not constitute an endorsement by King County government, its employees, or its elected and appointed officials.

Department of Natural Resources and Parks
Wastewater Treatment Division

Introduction

The Redmond Paired Watershed Study (RPWS) is one of several effectiveness monitoring studies that was selected for implementation starting in 2014 for the Stormwater Action Monitoring (SAM) program for Puget Sound. The goal of effectiveness monitoring under the SAM program is to provide widely applicable information for improving stormwater management in the region. The specific study question to be addressed through the RPWS is as follows:

How effective are watershed rehabilitation efforts at improving receiving water conditions at the watershed scale?

Monitoring for the RPWS initiated in 2016 and is anticipated to continue for a 10-year time frame. Trend analyses reports are being prepared at regular intervals to summarize analyses that were performed to detect potential improving trends in receiving water conditions. The first and second trend analysis reports were prepared after 4 and 8 years of study implementation, respectively (Herrera 2021, 2025). The first report documented a significant decrease in total suspended solids (TSS) and total copper concentrations in Monticello Creek that appeared related to a City of Redmond (City) project that progressively increased street sweeping frequency in the associated watershed. These results were consistent with another study that was implemented by the City of Seattle (SPU 2018).

To validate the effectiveness of street sweeping for improving water quality, the City obtained grant funding from King County Wastewater Treatment Division to progressively increase street sweeping in the Tosh Creek watershed. At the same time, the City obtained funding from the Washington State Department of Ecology (Ecology) to augment ongoing monitoring that is being performed for the RPWS to evaluate whether street sweeping can be effective at removing other pollutants of concern that are associated with roadway runoff and whether this removal can be detected in the nearby receiving water. Specifically, the City collected additional samples for evaluating concentrations of 6PPD-quinone (6PPDQ) and polycyclic aromatic hydrocarbons (PAHs) during the routine water quality monitoring that is conducted for the RPWS. A widely used antioxidant in rubber tires, 6PPDQ is an emerging contaminant in stormwater that is linked to acute mortality of coho salmon. PAHs are a common type of organic pollutant found in stormwater runoff that are known or probable human carcinogens and toxic to aquatic life. This augmented monitoring for the RPWS is hereafter referred to as the Tosh Creek Street Sweeping Study. The subsequent analyses that were performed for this study specifically looked at the benefits of street sweeping for decreasing concentrations of TSS and total copper to validate the results from the Monticello Creek study (Herrera 2021), while also assessing the potential benefits of street sweeping for decreasing concentrations of 6PPDQ and PAHs.

Data collection, processing, management, and analysis procedures for the RPWS are documented in a Quality Assurance Project Plan (QAPP) that was prepared for the study (Herrera 2015). The Tosh Creek Street Sweeping Study was implemented over a 2-year period covering water year (WY) 2023 and WY2024. Monitoring procedures specific to the Tosh Creek Street Sweeping Study are documented in an addendum (Herrera 2022) to the QAPP for the RPWS. An interim report (Herrera 2023) was prepared to

1

present results from the Tosh Creek Street Sweeping Study after three quarters of implementation in WY 2023.

This technical memorandum summarizes the final results for the Tosh Creek Street Sweeping Study. It is organized to include separate sections with the following information:

- Experimental Design
- Results
- Discussion
- Conclusions

Experimental Design

This section describes the experimental design for the Tosh Creek Street Sweeping Study. It begins with a description of the rationale for selecting the Tosh Creek watershed as the focus of the study. It then provides a summary of the street sweeping program that was implemented for the study. Finally, the sampling and data analysis procedures that were used to evaluate the effectiveness of street sweeping for 6PPDQ, PAHs, TSS, and total copper removal are described.

Watershed Selection Rationale

As described in more detail below, the Tosh Creek, Monticello Creek, and Evans Creek watersheds are the only three "Application" watersheds in the RPWS that have been prioritized for rehabilitation efforts pursuant to the City's watershed management plan (Herrera 2013). The Evans Creek watershed was dropped from the study at the end of WY2022, and the Monticello Creek watershed was the focus of City's previous study on street sweeping effectiveness. Hence, the Tosh Creek watershed was selected for this follow-up study.

Street Sweeping Program

City staff swept all public roads (3.54 miles) in the Tosh Creek watershed within Redmond city limits one time per month starting on October 29, 2022, and extending through the remainder of WY2023, and two times per month over all of WY2024. This is in addition to the regularly scheduled quarterly street sweeping. Sweeping was performed using a regenerative street sweeper. This street sweeper cleans curb to curb, including the crown of the road, with the intention of cleaning all surfaces possible during sweeping events. City staff used a counter to determine how many cars were parked on the road to estimate area of road missed.

To provide a control for assessing the effectiveness of the increased street sweeping in the Tosh Creek watershed, street sweeping in the Country Creek watershed was maintained at the regularly scheduled quarterly interval. Augmented monitoring for the Tosh Creek Street Sweeping Study was performed in both Tosh Creek and Country Creek, as described in the following subsection.

2

Sampling and Data Analysis Procedures

The experimental design for the RPWS has two primary components:

- Status and Trends Monitoring: Routine and continuous measurements of various hydrologic, chemical, physical habitat, and biological indicators of stream health over an extended time frame to quantify improvements in receiving water conditions in response to watershed rehabilitation efforts.
- Effectiveness Monitoring: Measurements of hydrologic and chemical parameters over a relatively short time frame to document the effectiveness of specific structural stormwater controls that have been constructed to improve receiving water conditions.

The Status and Trends Monitoring utilizes a "paired watershed" experimental design that involves collecting these measurements in seven watersheds categorized as follows:

- Three "Application" watersheds with wadeable lowland streams that are moderately impacted by urbanization and prioritized for rehabilitation efforts. (Note that one Application watershed was dropped from the study at the end of WY2022.)
- Two "Reference" watersheds with relatively pristine wadeable lowland streams that do not require rehabilitation.
- Two "Control" watersheds with wadeable lowland streams that are significantly impacted by urbanization and not currently prioritized for rehabilitation.

Table 1 identifies the name, predominant land use/cover, size of each watershed, and the number of outfalls and upstream road crossings; the location of all the watersheds is shown in Figure 1. A detailed summary of conditions within each watershed is also provided in the QAPP that was prepared for the RPWS (Herrera 2015).

The Monticello Creek watershed, shaded purple in Table 1, was the watershed used for the Monticello Creek street sweeping study discussed above. Major arterials in this watershed are Avondale Road Northeast and Northeast 116th Street. Riparian buffers on the main stem downstream, along Avondale Road Northeast, are modest (Herrera 2013).

The Tosh Creek and Country Creek watersheds, shaded orange in Table 1, are the application and control watersheds used for the Tosh Creek Street Sweeping Study. Major arterials in the Tosh Creek watershed include Northeast 51st Street and West Lake Sammamish Parkway Northeast, though the downstream monitoring location in this watershed, Tosh-Mouth, is upstream of the crossing with West Lake Sammamish Parkway Northeast, and Northeast 51st Street runoff is routed to a wetland north of the Tosh Creek main stem. For the Tosh Creek Watershed, riparian buffers are generally broad and mostly in good condition with abundant trees (Herrera 2013).

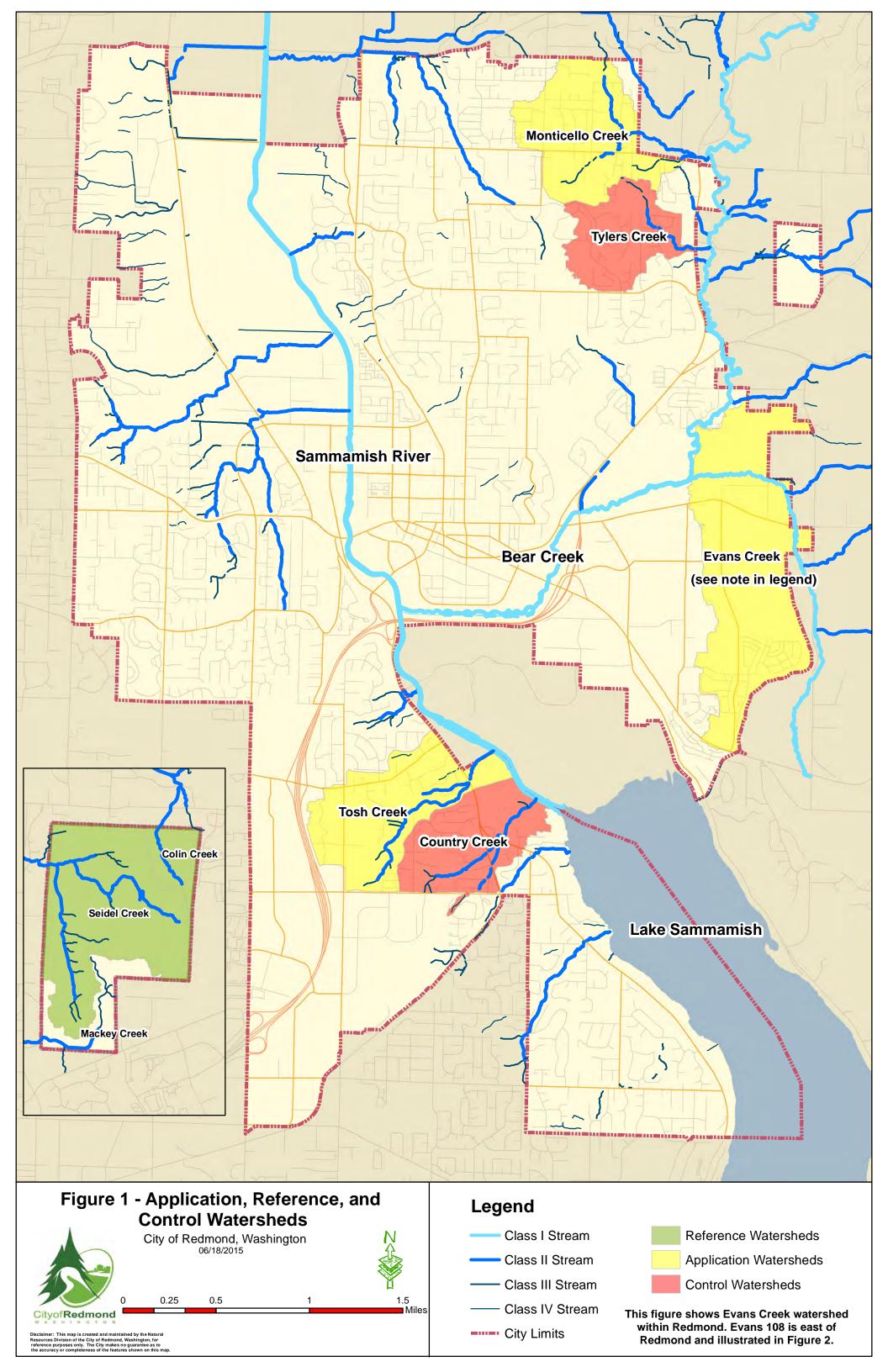
3

	Table 1. Application, Reference, and Control Watersheds for the Redmond Paired Watershed Study.									
Watershed Name	Watershed Type	Dominant Land Use/Cover	Watershed Total Area (acres)	Watershed Area Inside Redmond (acres)	Number of Outfalls and Ditches ^c	Number of Upstream Road Crossings ^d				
Evans Creek Tributary 108 ^{a,b}	Application	Residential	397	0 _p	ND	2				
Monticello Creek	Application	Residential/Commercial	345	264	11	12				
Tosh Creek	Application	Residential/Commercial	299	276	6	1				
Colin Creek ^b	Reference	Forest	1,990	90	0	0				
Seidel Creek ^b	Reference	Forest	1,188	615	6	0				
Country Creek	Control	Residential/Commercial	212	212	12	6				
Tyler's Creek	Control	Residential/Commercial	168	167	6	2				

Source: Herrera (2013)

ND = no data (watershed is outside of city limits)

Major arterials in the Country Creek watershed include West Lake Sammamish Parkway Northeast, Bellevue Redmond (Bel-Red) Road, and Northeast 40th Street. Riparian buffers are broad in the upper reach but narrow in the middle reaches (Herrera 2013).

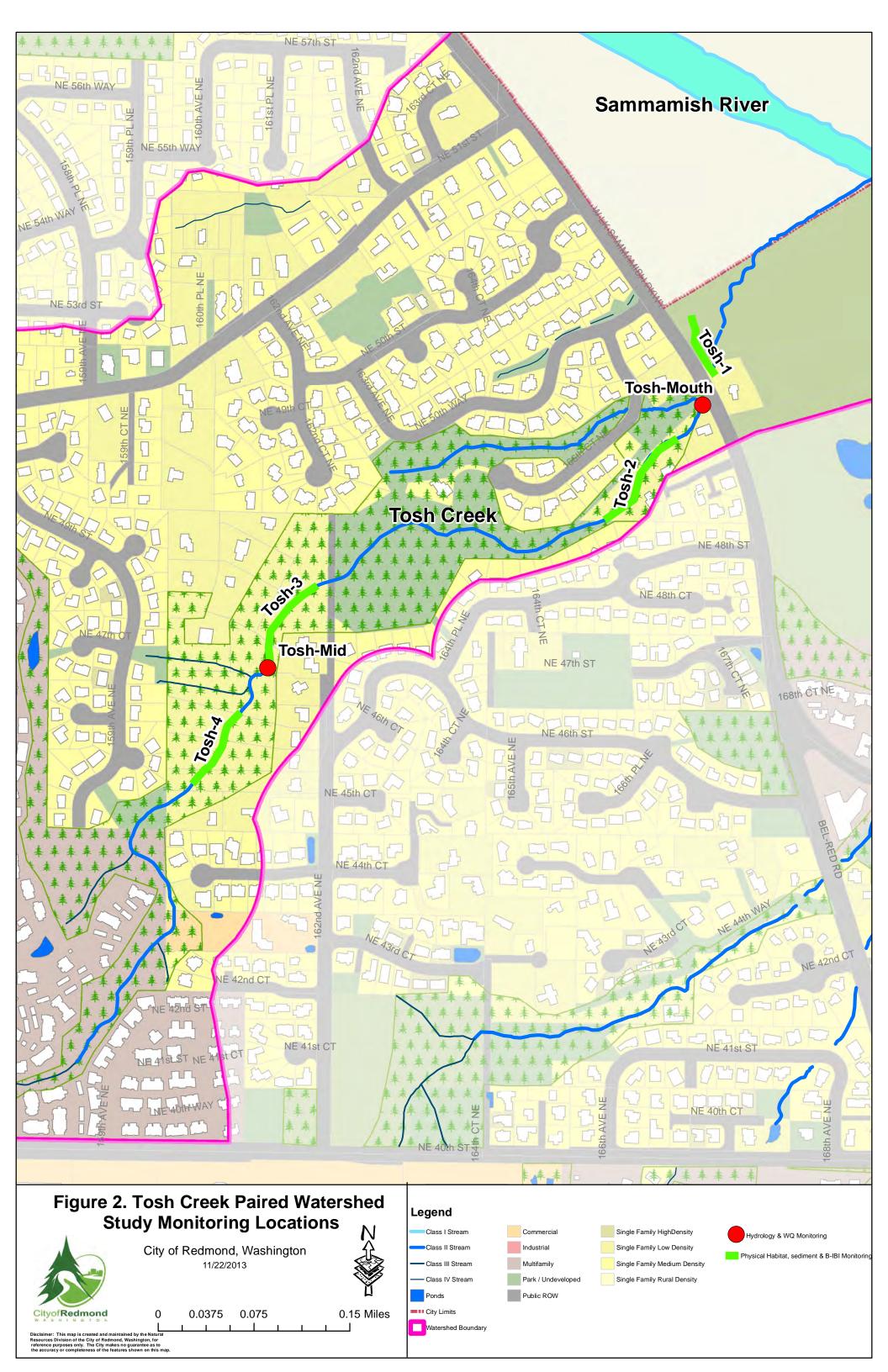


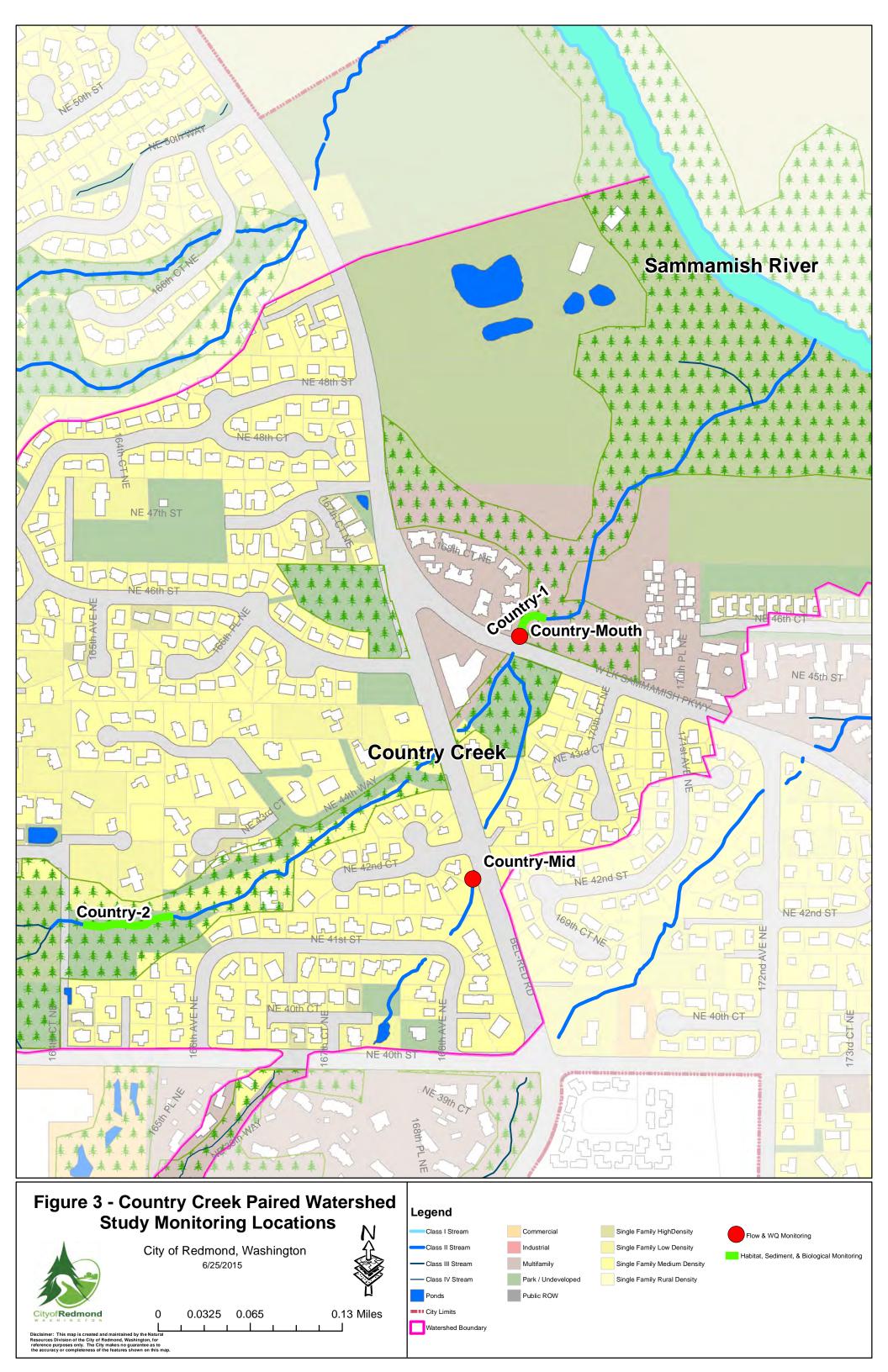
^a This watershed was dropped from the study at the end of WY2022.

^b Watershed is in unincorporated King County.

^c Number of mapped stormwater outfalls or ditches draining pollution generating surfaces that discharge to a stream, for all stream classes within the city limits.

^d Desktop analysis completed in 2025. Only includes crossings upstream of the most downstream monitoring location.


In connection with the Status and Trends Monitoring, routine water quality monitoring is conducted in each of these watersheds, which involves the collection of samples during three storm events and one base flow event in each quarter of the WY. For the Tosh Creek Street Sweeping Study, the water quality monitoring in each of the study watersheds continued as described in the QAPP for the RPWS; however, this monitoring was augmented by sample collection for 6PPDQ and PAHs in the Tosh Creek watershed and the Country Creek watershed. This sample collection spanned WY2023 and WY2024, respectively, to capture the increase in street sweeping frequency described in the previous section. In each watershed, the additional sampling for 6PPDQ and PAHs occurred at the station located at the creek mouth and at the upstream station located mid-watershed. The creek mouth and mid-watershed stations in the Tosh Creek watershed are designated Tosh-Mouth (TOSMO abbreviation) and Tosh-Mid (TOSMI abbreviation), respectively (Figure 2). The creek mouth and mid-watershed stations in the Country Creek watershed are designated Country-Mouth (COUMO abbreviation) and Country-Mid (COUMI abbreviation), respectively (Figure 3).


Collected samples from each station were submitted to OnSite Environmental, Inc. in Redmond, WA for analysis of the full suite of monitoring parameters identified in the QAPP for the RPWS and the following PAHs that are identified in the QAPP addendum for the Tosh Creek Street Sweeping Study:

- 1-Methylnaphthalene
- 2-Methylnaphthalene
- Acenaphthene
- Acenaphthylene
- Anthracene
- Benz[a]anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(ghi)perylene
- Benzo(j,k)fluoranthene
- Chrysene
- Dibenzo(a,h)anthracene
- Fluoranthene
- Fluorene
- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Phenanthrene
- Pyrene

Collected samples were also submitted to SGS AXYS Analytical Services, Ltd., in Sidney, British Columbia, Canada, for analysis of 6PPDQ in accordance with the QAPP addendum for the Tosh Creek Street Sweeping Study. Because analytical procedures for 6PDDQ were still in development, the laboratory was not accredited by Ecology for the analysis of this parameter over the duration of the study.

The QAPP for the RPWS established measurement quality objectives (MQOs) for discrete water quality data that are expressed in terms of precision, bias, representativeness, completeness, and comparability. Specific MQOs for 6PPDQ and PAHs were also identified in the QAPP addendum for the Tosh Creek Street Sweeping Study. Prior to their analysis, the data obtained from the sampling described above were reviewed to determine whether these MQOs were met. As necessary, data were flagged as estimates or rejected based on this review. Results from this review were documented in a data validation memorandum that is included as Appendix A to this technical memorandum.

6PPDQ and PAHs data were only available for periods when "monthly sweeping" and "twice monthly sweeping" was occurring (i.e., two treatments). To evaluate the potential water quality benefits of street sweeping for these parameters, concentrations in samples from these two respective treatment periods were compared using a Mann-Whitney U test (Helsel and Hirch 2002) to determine if they were significantly different. The following null and alternative hypotheses were specifically tested based on an α -level of 0.05 for a one-tailed test:

- Ho: Concentrations of 6PPDQ and PAHs measured during the twice monthly sweeping were higher or equal than those measured during the monthly sweeping.
- Ha: Concentrations of 6PPDQ and PAHs measured during the twice monthly sweeping were lower than those measured during the monthly sweeping.

Four analyses were performed on data from the following samples:

- Samples collected in Tosh Creek during storm events
- Samples collected in Country Creek during storm events
- Samples collected in Tosh Creek during base flow events
- Samples collected in Country Creek during base flow events

Results from the analyses of data from samples collected during storm and base flow events, respectively, were compared qualitatively across each watershed. The pattern of interest in this comparison was a decrease in pollutant concentrations with increased street sweeping in the Tosh Creek watershed and no decrease in the Country Creek watershed, where street sweeping was maintained at the regularly scheduled quarterly interval.

Data for TSS and total copper were available for periods when "quarterly sweeping," "monthly sweeping," and "twice monthly sweeping" was occurring (i.e., three treatments). Specifically, data obtained from routine monitoring for the RPWS over WY2021 and WY2022 when street sweeping occurred on a quarterly basis were leveraged for this analysis to validate the results from the Monticello Creek Study. For this analysis, concentrations of these parameters in samples from these three respective periods were compared using a Kruskal-Wallis test (Helsel and Hirch 2002) to determine if there were significant differences based on an α -level of 0.05. If significant differences were detected, a post-hoc multiple comparison test was performed to determine if there were significant differences in concentrations

9

between each possible combination of treatments (i.e., quarterly versus monthly, quarterly versus twice monthly, and monthly versus twice monthly). In addition to TSS and total copper, this analysis was also performed on "particulate" copper since the dissolved fraction of copper is not expected to be removed by street sweeping. Particulate copper was computed by subtracting the dissolved copper concentration from the total copper concentration for each collected sample.

Similar to 6PPDQ and PAHs, four separate analyses were performed on data for TSS, total copper, and particulate copper from the following samples:

- Samples collected in Tosh Creek during storm events
- Samples collected in Country Creek during storm events
- Samples collected in Tosh Creek during base flow events
- Samples collected in Country Creek during base flow events

Results from the analyses of data from samples collected during storm and base flow events, respectively, were compared qualitatively for each watershed. Again, the pattern of interest in this comparison was a decrease in pollutant concentrations with increased street sweeping in the Tosh Creek watershed and no decrease in the Country Creek watershed where street sweeping was maintained at the regularly scheduled quarterly interval.

The analyses described above were consistent with analyses that were performed for the Monticello Creek study (Herrera 2021) and analyses for the Tosh Creek Street Sweeping Study that are identified in the addendum (Herrera 2022) to the QAPP for the RPWS. Following review of a draft version of this memorandum, additional analyses were recommended for Tosh Creek Street Sweeping Study. Specifically, a mixed-effects model was recommended to better account for correlations within groups (e.g., monitoring stations, storm events). These analyses focused on 6PPDQ, particulate copper, and TSS. PAHs were not analyzed using this method due to the high proportion of non-detects.

For this analysis, several mixed-effects models were developed to evaluate temporal changes in pollutant concentrations while accounting for repeated measures and site-specific variability. The mixed-effects framework allows both fixed effects (e.g., watershed, year, event type) and random effects (e.g., sampling site, event date) to be incorporated, improving the ability to distinguish systematic trends or treatment effects—such as the influence of street sweeping—from random or site-level variability. This approach provides a more robust statistical basis for evaluating whether observed differences between watersheds or across years are likely attributable to management actions rather than natural or sampling variability.

Results

Results from the Tosh Creek Street Sweeping Study are summarized in this section. It includes an overview of the number of events that were sampled to provide data for assessing the benefits of street

sweeping. It then provides a description of concentrations measured for each parameter and their frequency of detection. Finally, the results from statistical analyses performed on the data are presented.

Sampling Event Summary

As shown in Table 2, a total of 30 samples were collected for assessing 6PPDQ and PAH concentrations, respectively, across WY2023 and WY2024; 15 samples were collected in WY2023, and 15 samples were collected in WY2024, respectively. In both cases, four of these samples were collected during base flow; the remaining samples were collected during storm events. Similarly, a total of 35 samples were collected for assessing TSS and total copper concentrations, respectively, across WY2023 and WY2024; 16 samples were collected in WY2023, and 19 samples were collected in WY2024, respectively. Again, four of the samples from each WY were collected during base flow; the remaining samples were collected during storm events.

In addition to the samples identified in Table 2, data from a total of 26 samples were available for assessing TSS and total copper concentrations, respectively, across WY2021 and WY2023 when quarterly street sweeping was occurring; 8 of these samples were collected during base flow, and the remaining samples were collected during storm events.

As shown in Table 2, samples from three events in WY2023 were collected while quarterly street sweeping was still occurring because the monthly sweeping did not initiate until October 29, 2022. Because these samples represented a small fraction of the total number of samples, they were not deemed suitable for assessing concentrations of 6PPDQ and PAHs during the quarterly street sweeping. Hence, the associated data from these samples were lumped with the data from samples collected during the monthly street sweeping for all subsequent analyses involving these parameters. Conversely, these samples were lumped with the data from samples collected during the quarterly street sweeping for the analyses involving TSS and total copper.

Table 2. Sampling Dates for Street Sweeping Study in Tosh Creek and Country Creek Watersheds.								
	Street Sweeping Treatment		Pa	arameter Analyz	ed (yes/no) and I	N-value		
Sampling Date	in Tosh Creek	Event Type	6PPDQ	PAHs	TSS	Total Copper		
9/27/2022 ^a	Quarterly ^b	Base	No	No	Yes	Yes		
10/21/2022	Quarterly ^b	Storm	Yes	Yes	Yes	Yes		
10/26/2022	Quarterly ^b	Base	Yes	Yes	No	No		
11/22/2022	Monthly	Storm	Yes	Yes	Yes	Yes		
11/29/2022	Monthly	Storm	Yes	Yes	Yes	Yes		
1/8/2023	Monthly	Storm	Yes	Yes	Yes	Yes		
1/12/2023	Monthly	Storm	Yes	Yes	Yes	Yes		
1/20/2023	Monthly	Base	Yes	Yes	Yes	Yes		
2/7/2023	Monthly	Storm	Yes	Yes	Yes	Yes		

11

	Table 2 (continued). S			Street Sweep Watersheds.			
	Street Sweeping Treatment		Parameter Analyzed (yes/no) and N-value				
Sampling Date	in Tosh Creek	Event Type	6PPDQ	PAHs	TSS	Total Copper	
3/2/2023	Monthly	Storm	Yes	Yes	Yes	Yes	
3/13/2023	Monthly	Storm	No	No	Yes	Yes	
4/6/2023	Monthly	Storm	Yes	Yes	Yes	Yes	
4/20/2023	Monthly	Storm	Yes	Yes	Yes	Yes	
4/27/2023	Monthly	Base	Yes	Yes	Yes	Yes	
5/5/2023	Monthly	Storm	Yes	Yes	Yes	Yes	
7/11/2023	Monthly	Base	Yes	Yes	Yes	Yes	
9/25/2023	Monthly	Storm	Yes	Yes	Yes	Yes	
10/5/2023	Twice Monthly	Base	Yes	Yes	Yes	Yes	
10/10/2023	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
10/16/2023	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
10/24/2023	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
11/6/2023	Twice Monthly	Storm	No	No	Yes	Yes	
12/5/2023	Twice Monthly	Storm	No	No	Yes	Yes	
12/22/2023	Twice Monthly	Storm	No	No	Yes	Yes	
1/8/2024	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
1/24/2024	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
2/21/2024	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
2/28/2024	Twice Monthly	Storm	No	No	Yes	Yes	
3/7/2024	Twice Monthly	Base	Yes	Yes	Yes	Yes	
4/25/2024	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
5/21/2024	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
6/2/2024	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
6/13/2024	Twice Monthly	Base	Yes	Yes	Yes	Yes	
7/29/2024	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
9/5/2024	Twice Monthly	Base	Yes	Yes	Yes	Yes	
9/25/2024	Twice Monthly	Storm	Yes	Yes	Yes	Yes	
N-value	Quarterly/Monthly	Storm	11	11	12	12	
N-value	Quarterly/Monthly	Base	4	4	4	4	
N-value	Twice Monthly	Storm	11	11	15	15	
N-value	Twice Monthly	Base	4	4	4	4	
N-value	All Treatments	All Events	30	30	35	35	

^a Sample collected in WY2022 but used to meet the base flow sampling requirement for WY2023.

b Sample collected during regularly scheduled quarterly street sweeping. The associated data from the sample were lumped with the data from samples collected during the monthly street sweeping for analyses performed for 6PPDQ and PAHs.

Concentration and Detection Frequency Summary

This section summarizes concentrations and detection frequencies for measured parameters in both watersheds during base flow and storm events, highlighting the highest median and maximum values observed and noting detection frequency. More detailed summary statistics for concentrations of each parameter by event type (storm or base) and treatment type (quarterly, monthly, and twice monthly sweeping) are also provided in the following appendices to this memorandum:

Appendix B Tabular Summary Statistics for 6PPDQ and PAHs

Appendix C Box Plots for 6PPDQ and PAHs

Appendix D Tabular Summary Statistics for TSS, Total Copper, and Particulate

Appendix E Box Plots for TSS, Total Copper, and Particulate Copper

As shown in Table 3, 6PPDQ was present at concentrations exceeding the reporting limit in the majority of samples (percent detected range = 88 to 100 percent across all stations and event types). Concentrations measured in individual samples ranged from 0.1 to 81.4 nanograms per liter (ng/L) across all stations and event types. Across all stations and storm events, the highest median concentration (26.4 ng/L) was measured at the COUMO station. Across all stations and base flow events, the highest median concentration (2.3 ng/L) was measured at the TOSMI station.

Table 3	Table 3. Summary Statistics for 6PPD-quinone (ng/L) by Station and Sampling Event Type.										
Station	N	Minimum	Median	Maximum	Interquartile Range	Percent Detected	Percent Exceeding Screening Level Value for Acute Exposure ^a				
Storm Events											
TOSMI	22	3.3	17.4	81.4	11.7	100%	68%				
TOSMO	22	1.3	7.9	20.9	8.5	100%	27%				
COUMI	22	0.2	7.5	22.8	7.3	100%	23%				
COUMO	22	1.5	26.4	64.1	30.0	100%	77%				
				Base F	low						
TOSMI	8	0.6	2.3	8.4	2.2	100%	0%				
TOSMO	8	0.2	1.3	4.3	1.8	100%	0%				
COUMI	8	0.1	0.4	1.5	0.3	88%	0%				
COUMO	8	0.4	1.4	7.7	1.5	100%	0%				

^a Acute criterion for protection of aquatic life is 12 ng/L (Ecology 2024).

For reference, a screening level value of 12 ng/L has been established to protect aquatic life from acute exposure to 6PPDQ (Ecology 2024). A screening level value is distinct from the national recommended Ambient Water Quality Criteria. The U.S. Environmental Protection Agency (EPA) issues screening level values when data are limited and they can't derive criteria according to their 1985 guidelines. Ecology has

developed water quality criteria for 6PPDQ and is awaiting EPA approval on those before being implemented in Clean Water Act actions like permits and assessments. The screening level value was exceeded in 43 (49 percent) of the samples collected during storm events across all stations. The greatest number of exceedances were observed at the TOSMI station (68 percent of samples) and COUMO station (77 percent of samples). While the screening level value is generally more applicable to acute exposure during storm events, no samples collected during base flow events exceeded this value.

Out of the 18 PAHs identified in the Experimental Design section, only the following 11 were detected at concentrations that exceeded their associated reporting limit (percent detected range is provided also across all stations and event types):

- Benz[a]anthracene: range = 0 to 36 percent
- Benzo(a)pyrene: range = 0 to 27 percent
- Benzo(b)fluoranthene range = 0 to 55 percent
- Benzo(ghi)perylene range = 0 to 32 percent
- Benzo(j,k)fluoranthene range = 0 to 18 percent
- Chrysene range = 0 to 41 percent
- Dibenzo(a,h)anthracene range = 0 to 9 percent
- Fluoranthene range = 0 to 5 percent
- Indeno(1,2,3-cd)pyrene range = 0 to 36 percent
- Phenanthrene range = 0 to 5 percent
- Pyrene range = 0 to 5 percent

As shown in Appendix B (Tables B-2 through B-18), the highest maximum concentration (0.280 micrograms per liter [μ g/L]) was measured for phenanthrene at the TOSMO station across all stations and storm events. Median concentrations across all stations and base flow events were generally at the reporting limit.

As shown in Table 4, TSS was present at concentrations exceeding the reporting limit in the majority of samples (percent detected range = 82 to 100 percent across all stations and event types). Concentrations measured in individual samples ranged from 0.8 to 790 milligrams per Liter (mg/L) across all stations and event types. Across all stations and storm events, the highest median concentration (69.5 mg/L) was measured at the TOSMO station while the highest maximum concentration (790 mg/L) was measured at the TOSMI station. Across all stations and base flow events, the highest median concentration (11.0 mg/L) was measured at the COUMI station, while the highest maximum concentration (170 mg/L) was measured at the TOSMO station.

Table 4. Summary Statistics for Total Suspended Solids (mg/L) by Station and Sampling Event Type.									
Station	N	Minimum	Median	Maximum	Interquartile Range	Percent Detected			
			Storm Events						
TOSMI	44	1.0	58.5	790	65.8	98%			
TOSMO	44	1.0	69.5	710	116	98%			
COUMI	44	1.0	26.5	320	60.0	98%			
COUMO	44	1.0	22.0	150	35.3	98%			
			Base Flow						
TOSMI	17	0.8	8.8	55.0	8.0	94%			
TOSMO	17	0.8	9.6	170	12.0	94%			
COUMI	17	4.4	11.0	51.0	9.8	100%			
COUMO	17	0.8	5.0	39.0	3.8	82%			

As shown in Table 5, total copper was present at concentrations exceeding the reporting limit in most samples (percent detected range = 47 to 100 percent across all stations and event types).

Concentrations measured in individual samples ranged from 1.0 to 47 μ g/L across all stations and event types. Across all stations and storm events, the highest median concentration (6.9 μ g/L) was measured at the TOSMI station while the highest maximum concentration (47 μ g/L) was measured at this same station. Across all stations and base flow events, the highest median concentration (2.2 μ g/L) was measured at the TOSMI station. Across all base flow events, the highest maximum concentration

(11.0 μ g/L) was measured at all stations, reflecting an unusually high reporting limit that was obtained from the laboratory for the sampling event on January 22, 2021.

Table 5. S	ummary Statis	tics for Total	Copper (ug/L)	by Station ar	nd Sampling Ev	ent Type.					
Station	N	Minimum	Median	Maximum	Interquartile Range	Percent Detected					
	Storm Events										
TOSMI	44	1.9	6.9	47	4.5	100%					
TOSMO	44	1.6	5.8	41	5.3	100%					
COUMI	44	1.0	3.3	27	3.2	95.5%					
COUMO	44	1.1	4.3	40	2.8	100%					
			Base Flow								
TOSMI	17	1.0	2.2	11	2.2	94%					
TOSMO	17	1.0	1.0	11	0.3	47%					
COUMI	17	1.0	1.0	11	0.9	47%					
COUMO	17	1.0	1.0	11	0.2	53%					

15

Concentrations of particulate copper measured in individual samples ranged from 0 to 42 μ g/L across all stations and event types (Table 6). Across all stations and storm events, the highest median concentration (3.4 μ g/L) was measured at the TOSMI station, while the highest maximum concentration (42 μ g/L) was measured at this same station. Across all stations and base flow events, the highest median concentration (1.1 μ g/L) was measured at the TOSMI station. The highest maximum concentration (10.0 μ g/L) across all base flow events was measured at all stations and again reflects an unusually high reporting limit that was obtained from the laboratory for the sampling event on January 22, 2021.

	Table 6. Summary Statistics for Particulate Copper (ug/L) by Station and Sampling Event Type.										
Station	N	Minimum	Median	Maximum	Interquartile Range						
	Storm Events										
TOSMI	44	0.20	3.4	42	3.8						
TOSMO	44	0.20	3.1	37	4.4						
COUMI	44	0.00	1.5	13	2.3						
COUMO	44	0.10	1.6	19	1.8						
			Base Flow								
TOSMI	17	0.0	1.1	10	2.3						
TOSMO	17	0.0	0.0	10	0.3						
COUMI	17	0.0	0.0	10	0.9						
COUMO	17	0.0	0.0	10	0.1						

Statistical Analysis Results

Mann-Whitney and Kruskal-Wallis Test Results

Raw results from the Mann-Whitney U tests comparing concentrations of 6PPDQ and PAHs measured during the periods with "monthly sweeping" and "twice monthly sweeping" are presented in Appendix F. Results from the control watershed, where no sweeping was conducted, are examined qualitatively to provide contextual comparison. Table 7 identifies the specific instances where concentrations measured during the twice monthly sweeping period were significantly lower than those measured during the monthly sweeping period for each combination of station and parameter from sampling that occurred during storm and base flow events, respectively. These results indicate concentrations were lower in storm event samples during the twice monthly sweeping period for only one station and parameter combination (TOSMO and benz[a]anthracene) in the Tosh Creek watershed where street sweeping was increased. At the same time, concentrations were lower in storm event samples during the twice monthly sweeping period for 11 of the PAHs at the COUMI station in the Country Creek watershed where street sweeping was not increased. These patterns are generally evident in the box plots that are provided in Appendix C. No significant differences were detected for any station or parameter combination based on the base flow event samples.

	Та	ble 7. M	lann-Whit	ney U Te	st Results.			
			tershed Stat ping Experim		Country Creek Watershed Stations: No Increased Sweeping Control			
	TOS	мо	то	TOSMI		соимо		IMI
Parameter	Storm	Base	Storm	Base	Storm	Base	Storm	Base
6PPDQ								
1-Methylnaphthalene							Decrease	
2-Methylnaphthalene							Decrease	
Acenaphthene							Decrease	
Acenaphthylene							Decrease	
Anthracene							Decrease	
Benz[a]anthracene	Decrease							
Benzo(a)pyrene								
Benzo(b)fluoranthene								
Benzo(ghi)perylene								
Benzo(j,k)fluoranthene								
Chrysene								
Dibenzo(a,h)anthracene							Decrease	
Fluoranthene							Decrease	
Fluorene							Decrease	
Indeno(1,2,3-cd)pyrene								
Naphthalene							Decrease	
Phenanthrene							Decrease	
Pyrene							Decrease	

Decrease: Concentrations for the indicated parameter were significantly lower during the twice monthly sweeping periods relative to those measured during the monthly sweeping period based on a one-tailed test at an α -level of 0.05.

Raw results from the Kruskal-Wallis tests comparing concentrations of TSS, total copper, and particulate copper measured during the periods with "quarterly sweeping," "monthly sweeping," and "twice monthly sweeping" are presented in Appendix G. Based on these results and the associated post-hoc multiple comparison tests, the following patterns were detected in the data for each combination of station and parameter from sampling that occurred during storm and base flow events, respectively.:

- Tosh Creek Watershed Stations Increased Sweeping Experimental
 - o TOSMO: TSS concentrations from storm event samples were significantly lower during the monthly sweeping relative to those from the quarterly sweeping period; no other differences detected (see graphical representation in Figure 4).

- Country Creek Watershed Stations No Increased Sweeping Control
 - o COUMI: TSS concentrations from storm event samples were significantly lower during the twice monthly sweeping period relative to those from the quarterly sweeping period; no other differences detected (see graphical representation in Figure 5).
 - o COUMI: Total copper concentrations from storm event samples were significantly lower during the monthly sweeping period relative to those from the quarterly sweeping period; no other differences detected (see graphical representation in Figure 6).

No significant differences were detected for any station or parameter combination based on the base flow event samples.

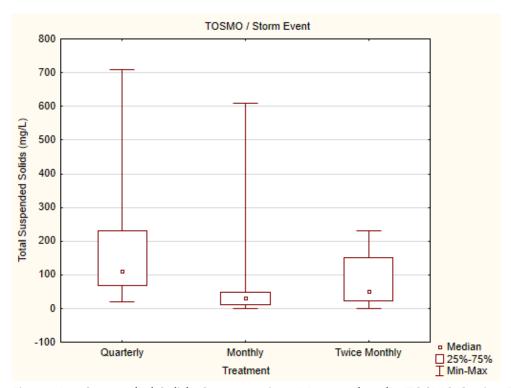


Figure 4. Suspended Solids Concentrations Measured at the TOSMO Station During Storm Events Across Street Sweeping Treatments.

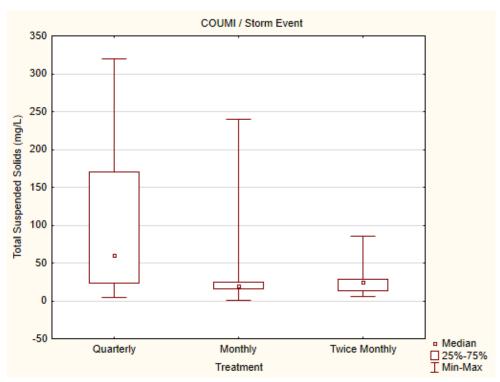


Figure 5. Suspended Solids Concentrations Measured at the COUMI Station During Storm Events Across Street Sweeping Treatments.

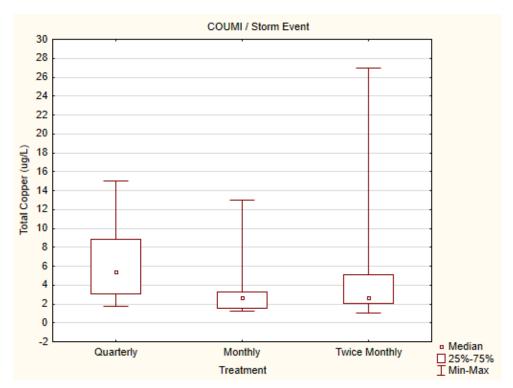


Figure 6. Total Copper Concentrations Measured at the COUMI Station During Storm Events Across Street Sweeping Treatments.

Mixed Model Results

Mixed-effects models were used to evaluate whether differences in constituent concentrations between watersheds and water years were statistically meaningful while accounting for correlations among repeated samples from the same monitoring locations and sampling events. Four models (FM1–FM4) were compared for each analyte using Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC), and log-likelihood as indicators of relative model fit (Table 8). Lower AIC, BIC, and -2*log-likelihood values indicate better model fit after penalizing for model complexity.

For 6PPDQ, FM4 (which included only event type as fixed effects and excluded water year and watershed) produced the lowest AIC and BIC, indicating a slightly better fit relative to models that included water year, watershed, or interaction terms. This suggests that differences in 6PPDQ concentrations were better explained by event type rather than by interannual or spatial variation between 2023 and 2024.

For both TSS and particulate copper, FM1 (which included interactive watershed and water year effects and event-type effects) provided the best overall fit, implying modest evidence that interannual variation contributed to observed differences and that the interannual variation was different between the Tosh and Country Creek watersheds.

Overall, model comparisons suggest that while water year effects were detectable for TSS and particulate copper, the strongest and most consistent predictor of constituent concentrations was event type (reflecting that storm events typically had higher concentrations than base flow events).

To summarize:

- Event type (storm vs. base flow) was the strongest predictor of 6PPDQ, TSS, and particulate copper concentrations in both Tosh and Country Creeks.
- For 6PPDQ, neither watershed (Tosh vs. Country) nor water year provided meaningful information, suggesting that sweeping-related differences were not detectable.
- For TSS and particulate copper, the interaction between watershed and water year was statistically significant, indicating that the change in concentrations over time differed between Tosh and Country Creeks. Specifically, concentrations decreased in both watersheds from 2021 to 2024, but the decrease was smaller in Tosh Creek, consistent with weaker hydrologic connectivity between swept surfaces and monitoring locations (see more detailed interpretation of these results in the Discussion section).

Table 8. Mixed Model Comparison.									_			
				6PPDQ (2023–2024)		TSS (2021–2024)		Particulate Copper (2021–2024)				
Model	Formula	Fixed Effects	Random Effects	AIC	BIC	-2 * Log Likelihood	AIC	BIC	-2 * Log Likelihood	AIC	BIC	-2 * Log Likelihood
FM1	log(Result) ~ Watershed * WaterYear + eventType + (1 Location) + (1 eventDate)	Interaction between Watershed and Water Year Event Type	Monitoring Station Sampling Date	335.53	357.83	319.53	711.85	739.84	695.87	671.7	699.68	655.70
FM2	log(Result) ~ Watershed + WaterYear + eventType + (1 Location) + (1 eventDate)	Watershed Water Year Event Type	Monitoring Station Sampling Date	334.81	364.32	320.81	714.85	739.33	700.85	676.97	701.45	662.97
FM3	log(Result) ~ Watershed * EventType + (1 Location) + (1 eventDate)	Watershed Event Type	Monitoring Station Sampling Date	332.82	349.55	320.82	716.62	737.61	704.62	677.95	698.94	665.95
FM4	log(Result) ~ eventType + (1 Location) + (1 eventDate)	Event Type	Monitoring Station Sampling Date	330.99	344.93	320.99	716.76	737.75	704.76	682.11	703.09	670.11
Model I	Model Interpretation Summary All models performed and the event type (b most important expla There was insufficient the rate of change for differed between the		e (base vs. storm) wa xplanatory variable. ient evidence to sugg e for 6PPQ concentra	s the gest that	The best performing mode indicates that the event type and that temporal trends in different between Tosh and Creeks.			importan S were	t indicates t important particulate	The best performing model (FM1) indicates that the event type is important and that temporal trends i particulate copper were different between Tosh and Country Creeks.		is trends in erent

Table 9. Selected Mixed Model Summary for 6PPD-quinone, Total Suspended Solids, and Particulate Copper.								
Parameter	Selected Model	Effect	Estimate	Standard Error	p-value	Interpretation		
6PPDQ	FM4	(Intercept)	0.069	0.400	0.867	Baseline condition (base flow).		
		Event Type (Storm)	2.248	0.309	<0.001	Storm events had 9.5 times higher 6PPDQ concentrations than base flow.		
TSS	FM1	(Intercept)	1.779	0.337	<0.001	Baseline condition (Country Creek, water yea 2021, base flow).		
		Event Type (Storm)	1.723	0.310	<0.001	Storm events had 5.6 times higher TSS concentrations than base flow.		
		Watershed (Tosh)	0.514	0.303	0.229	Tosh Creek TSS was 1.7 times greater than Country, but this trend was <i>not</i> statistically significant.		
		WaterYear	-0.328	0.127	0.012	In Country Creek, TSS decreased by ~33 percent per year between 2021 and 2024.		
		WaterYear: Tosh	0.196	0.087	0.026	In Tosh Creek, the TSS decrease was smaller (~13 percent per year).		
Particulate Copper	FM1	(Intercept)	-0.803	0.228	0.002	Baseline condition (Country Creek, water year 2021, base flow).		
		Event Type (Storm)	1.330	0.229	<0.001	Storm events had 3.8 times higher particulate copper concentrations than base flow.		
		Watershed: Tosh	0.671	0.172	0.056	Tosh Creek particulate copper was 2.0 times greater than Country. This trend was borderline statistically significant.		
		WaterYear	-0.269	0.098	0.007	In Country Creek, particulate copper decreased by ~27 percent per year between 2021 and 2024.		
		WaterYear: Tosh	0.238	0.088	0.007	In Tosh Creek, the decline was much smaller (~3 percent per year, potentially flat).		

Discussion

As noted in the Introduction, the first trend analysis report that was prepared for the RPWS (Herrera 2021) documented a significant decrease in TSS and total copper concentrations in Monticello Creek that appeared related to a City project that progressively increased street sweeping frequency in the associated watershed. Specifically, this observed water quality improvement was coincident with an increase in street sweeping in the basin from quarterly, to monthly, to twice monthly. In addition to TSS and total copper, analyses were also performed on data for other pollutants that are most likely to be affected by street sweeping, which included total phosphorus, total nitrogen, and total zinc. The pattern of interest in this analysis was a consistent decrease in pollutant concentrations across all three periods of street sweeping. "Consistent" implies the data move in one direction through each of the time periods. It

is possible to have a significant difference among the three time periods but not have it move in one consistent direction (e.g., elevated concentrations in the first time period, significantly lower in the second, but then elevated again in the third time period). This is a less-interesting pattern because sweeping was progressively increased through the time periods, so any improvement in water quality caused by increased sweeping should also follow this trend (i.e., consistent improvement through each time period). As documented in Herrera (2021), TSS and total copper both exhibited a consistent and significant decrease at the MONMS station in the Monticello Creek watershed during storms; a similar decrease was not observed at any of the other 13 monitoring stations located across the 7 study watersheds.

These results are also consistent with a street sweeping study that was implemented by Seattle Public Utilities (SPU) along Martin Luther King Avenue in Seattle, Washington (SPU 2018). This study also found a relationship between sweeping and decreased pollutant concentrations in stormwater for two pollutants: particulate copper and coarse sediment above 250 microns. Unlike the study performed in the Monticello Creek watershed and the study discussed herein that examine potential water quality improvements in the receiving water from street sweeping, the SPU study examined potential water quality improvements in the catch basin directly adjacent to the road being swept; hence, there were likely fewer confounding variables to contend with in the SPU study. Although the study in the Monticello Creek watershed and the SPU study had substantially different designs, they both came to a similar conclusion, which is that street sweeping appears to have an effect on copper and TSS in stormwater.

While the Tosh Creek Street Sweeping Study was implemented in part to validate the results from these previous studies, the results obtained do not provide any additional evidence that street sweeping is effective at reducing TSS and total copper because no consistent decreasing trend was observed in the data in response to the increased street sweeping based on the results from the Kruskal-Wallis test. Furthermore, a consistent decreasing trend was also not observed for 6PPDQ and PAHs in response to the increased street sweeping based on results from the Mann-Whitney U test. In fact, consistent decreases in pollutant concentrations were generally detected more frequently at the COUMI station in the Country Creek watershed where no increase in street sweeping occurred.

To better evaluate these patterns, additional analyses were performed using mixed-effects models that more explicitly accounted for temporal autocorrelation (e.g., repeated sampling within stations and storm events) and differences among sites. Results from the mixed-effects model generally confirmed the findings from the Mann-Whitney U and Kruskal-Wallis tests: both Tosh and Country Creeks showed decreasing concentrations of TSS and particulate copper between 2021 and 2024, but the decreases were weaker in Tosh Creek and not statistically distinguishable from natural variation or background trends. No measurable trend was observed for 6PPDQ.

The lack of a clear sweeping signal in Tosh Creek likely reflects hydrologic and land use factors rather than analytical limitations. Field review and drainage mapping indicate that while there are a number of busy public roadways within the delineated Tosh Creek watershed, most are routed through stormwater systems that discharge to wetlands north of the creek, reducing direct road-to-stream connectivity. In contrast, Country Creek has a higher proportion of directly connected road crossings and outfalls. Tosh

Creek has 0.8 outfall per 1,000 feet of creek, while Country Creek has 1.6 outfalls per 1,000 feet and Monticello has 3.5 outfalls per 1,000 feet. Tosh Creek also contains two large multifamily complexes with private roads that were not included in the City's sweeping program. Together, these factors suggest that sweeping in Tosh Creek may have less influence on the instream monitoring locations than in more directly connected systems such as Monticello Creek.

Additionally, external factors such as post-pandemic changes in traffic patterns appear unlikely to explain the results. Regional traffic volumes increased steadily between 2021 and 2024 (Table 10), yet particulate copper and TSS concentrations decreased modestly in both watersheds. This suggests that while overall pollutant loading may be influenced by vehicle activity, the degree of hydraulic connection between road surfaces and streams remains a key determinant of instream water quality response to sweeping.

Table 10. Traffic Count Data Within and Near the Tosh and Country Creek Watersheds.								
	WSDOT Tra	ffic Data	Redmond Traffic Data					
Year	State Route 520 Traffic AADT (@ NE 40th Street)	Percent Annual Change	NE 51st Street and Lake Sammamish Parkway	Lake Sammamish Parkway and Bel-Red	156th Avenue and Bel-Red			
2019	74,788		3,700	20,500	19,000			
2020	48,596	-35%						
2021	53,840	11%						
2022	61,404	14%	2,883	17,141	15,565			
2023	64,706	5%						
2024	67,359	4%						

WSDOT = Washington State Department of Transportation; AADT = annual average daily traffic

Finally, it is possible the benefits of street sweeping could not be demonstrated because the experimental design used for the Tosh Creek Street Sweeping Study was not sufficiently robust. In general, there are many confounding factors that come into play when interpreting variations in water quality over different time periods in urban watersheds (e.g., timing of sample collection, climatic variation, land use land cover changes, etc.) (Bertrand-Krajewski et al. 1998; Lee et al. 2002; Hatt et al. 2004). This is especially true when monitoring is being conducted in the receiving water where numerous instream processes can influence water quality (e.g., bank and channel scour, groundwater inputs, etc.). As noted above, the SPU study examined potential water quality improvements in the catch basin directly adjacent to the road being swept, which resulted in fewer confounding variables. It is possible the benefits of street sweeping could be more easily detected for parameters such as 6PPDQ through implementation of a more controlled study.

Conclusions

The Tosh Creek Street Sweeping Study was implemented to achieve the following objectives:

- Validate results from previous studies that documented decreasing concentrations of TSS and total copper associated with increased street sweeping.
- Assess the potential benefits of street sweeping for decreasing concentrations of 6PPDQ and PAHs.

The experimental design involved sweeping all public roads in the Tosh Creek watershed within Redmond city limits one time per month starting on October 29, 2022, and extending through the remainder of WY2023, and two times per month over all of WY2024. This is in addition to the regularly scheduled quarterly street sweeping. To provide a control for assessing the effectiveness of the increased street sweeping in the Tosh Creek watershed, street sweeping in the Country Creek watershed was maintained at the regularly scheduled quarterly interval.

In connection with the Status and Trends Monitoring for the RPWS, routine water quality monitoring was conducted in the Tosh Creek and Country Creek watersheds that involved the collection of samples during three storm events and one base flow event in each quarter of the WY; however, this monitoring was augmented by sample collection for 6PPDQ and PAHs. This sample collection spanned WY2023 and WY2024, respectively, to capture the increase in street sweeping.

Results from this sampling showed 6PPDQ was present at concentrations exceeding the reporting limit in the majority of samples. Furthermore, the screening level value for 6PPDQ (Ecology 2024) was exceeded in 49 percent of the samples collected during storm events across all stations; this value was not exceeded in any of the samples collected during base flow. PAHs were frequently not present at concentrations that exceeded applicable reporting limits.

Results from both conventional statistical tests and mixed-effects model analyses indicate that TSS and particulate copper concentrations decreased slightly in both Tosh and Country Creeks between 2021 and 2024, but no measurable difference could be attributed to the increased sweeping frequency in Tosh Creek. No trends were observed for 6PPDQ or PAHs. These results suggest that while water quality in both watersheds may be improving modestly, the effect of street sweeping is not discernible in Tosh Creek, likely due to limited direct connectivity between swept streets and the receiving water and the influence of other non-swept surfaces (e.g., private roads and parking areas).

While these findings do not validate the results from the previous study in Monticello Creek, this is expected to be due to the low street-to-stream connectivity of Tosh Creek, rather than evidence that street sweeping is ineffective. Previous studies have shown that street sweeping can improve stormwater quality where swept surfaces are hydrologically well connected to monitored outfalls or streams. In settings such as Tosh Creek, where that connection is weaker, the benefits of sweeping may not be detectable at instream monitoring locations despite measurable decreases in roadway pollutant sources.

References

Bertrand-Krajewski, J.L., G. Chebbo, and A. Saget. 1998. Distribution of Pollutant Mass Vs. Volume in Stormwater Discharges and the First Flush Phenomenon. Water Research 32(8):2341–2356.

Ecology. 2024. Concise Explanatory Statement Chapter 173-201A WAC Aquatic Life Toxics Critiera: Summary of Rulemaking and Response to Comments. State of Washington State Department of Ecology. Publication No. 24-10-032. August.

Hatt, B.E., T.D. Fletcher, C.J. Walsh, and S.L. Taylor. 2004. The Influence of Urban Density and Drainage Infrastructure on the Concentrations and Loads of Pollutants in Small Streams. Environmental Management 34(1):112–124.

Helsel, D.R., and R.M. Hirsch. 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey.

Herrera. 2013. 2013 City of Redmond, Washington: Citywide Watershed Management Plan. Prepared for the City of Redmond by Herrera Environmental Consultants, Inc., Seattle, Washington. December 31.

Herrera. 2015. Quality Assurance Project Plan: Redmond Paired Watershed Study. Prepared for the City of Redmond by Herrera Environmental Consultants, Inc., Seattle, Washington. December 31.

Herrera. 2021. Redmond Paired Watershed Study Trend Analysis Report: Water Years 2016–2019. Prepared for the City of Redmond by Herrera Environmental Consultants, Inc., Seattle, Washington. February 19.

Herrera. 2022. Addendum 1 to the Quality Assurance Project Plan for the Redmond Paired Watershed Study. Prepared for the City of Redmond by Herrera Environmental Consultants, Inc., Seattle, Washington. June 8.

Herrera. 2023. Tosh Creek Street Sweeping Study – Interim Summary Report. Prepared for the City of Redmond by Herrera Environmental Consultants, Inc., Seattle, Washington. July 5.

Herrera. 2025. Redmond Paired Watershed Study Trend Analysis Report: Water Years 2016–2023. Prepared for the City of Redmond by Herrera Environmental Consultants, Inc., Seattle, Washington. June 25.

Lee, J.H., K.W. Bang, L.H. Ketchum, J.S. Choe, and M.J. Yu. 2002. First Flush Analysis of Urban Storm Runoff. Science of the Total Environment 293(1–3):163–175.

Schueler, T. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Prepared for the Washington Metropolitan Water Resources Planning Board. July 7.

SPU. 2018. NPDES Phase I Municipal Stormwater Permit: Street Sweeping Water Quality Effectiveness Study Final Report. Seattle Public Utilities, Seattle, Washington.

Tian Z., M. Gonzalez, C.A. Rideout, H.N. Zhao, X. Hu, J. Wetzel, E. Mudrock, C.A. James, J.K. McIntyre, and

E.P. Kolodziej. 2022. 6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard. Environmental Science & Technology Letters 2022, 9, 2, 140–146.

Appendix A

Data Validation Memorandum

Herrera Environmental Consultants, Inc.

Internal Memorandum

Date: January 30, 2025

To: Project File

From: Nikki VandePutte

Subject: Data Quality Assurance Review of the Redmond Paired Watershed Stormwater Retrofit

Effectiveness Water Quality Monitoring Data – Tosh Creek Street Sweeping

Data Quality Assurance Review

This memorandum presents a review of data quality for 127 water samples (including 7 field duplicates) collected for the Redmond Paired Watershed Stormwater Retrofit Effectiveness Study between October 26, 2022, and September 25, 2024 (Table 1).

OnSite Environmental, Inc., of Redmond, Washington, analyzed the samples for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270E-SIM.

SGS AXYS Analytical Services, Ltd., of Sidney, British Columbia, Canada, analyzed samples for 6PPDQuinone (6PPDQ) by Method MLA-118.

Table 1. Effectiveness Monitoring Samples.							
Date Collected	Lab SDG	Samples Collected	QC Samples Collected				
10/21/2022	2210-222	4 stations	NA				
10/26/2022	2210-298	4 stations	NA				
11/22/2022	2211-296	4 stations	NA				
11/29/2022	2211-351	4 stations	NA				
1/8/2023	2301-049	4 stations	NA				
1/12/2023	2301-084	4 stations	NA				
1/20/2023	2301-173	4 stations	1 field duplicate				
2/7/2023	2302-068	4 stations	NA				
3/2/2023	2303-020	4 stations	1 field duplicate				
4/6/2023	2304-066	4 stations	NA				
4/20/2023	2304-245	4 stations	1 field duplicate				
4/27/2023	2304-315	4 stations	NA				
5/5/2023	2305-051	4 stations	NA				
7/11/2023	2307-049	4 stations	NA				
9/25/2023	2309-253	4 stations	1 field duplicate				
10/5/2023	2310-056	4 stations	1 field duplicate				
10/10/2023	2310-116	4 stations	NA				
10/16/2023	2310-190	4 stations	NA				
10/24/2023	2310-287	4 stations	NA				
1/8/2024	2401-067	4 stations	1 field duplicate				
1/24/2024	2401-243	4 stations	NA				
2/21/2024	2402-276	4 stations	NA				
3/7/2024	2403-095	4 stations	NA				
4/25/2024	2404-348	4 stations	NA				
5/21/2024	2405-300	4 stations	NA				
6/2/2024	2406-001	4 stations	1 field duplicate				
6/13/2024	2406-159	4 stations	NA				
7/29/2024	2407-311	4 stations	NA				
9/5/2024	2409-040	4 stations	NA				
9/25/2024	2409-327	4 stations	NA				

The laboratory's performance was reviewed in accordance with quality control (QC) criteria established in the *Redmond Paired Watershed Study Quality Assurance Project Plan* (QAPP) (Herrera 2015) and *Addendum 1 to the Quality Assurance Project Plan for the Redmond Paired Watershed Study* (Herrera 2022), by the laboratory, and in the specified methods.

Quality control data summaries submitted by the laboratory were reviewed; raw data were not submitted by the laboratory. Data Quality Assurance Worksheets were completed for each laboratory report. Data

qualifiers (flags) were added to the sample results in the laboratory reports. Data validation results are summarized below, followed by definitions of data qualifiers.

Custody, Preservation, Holding Times, and Completeness – Acceptable with Qualification

Samples were collected at all stations for every event. The goal for sampling events was three storms and one base flow event per quarter for 2 years (32 events, 128 samples). However, in both water years, only two storms were sampled in Quarter 4 due to dry weather. Thus, the total number of events was 30, and the total number of samples was 120.

The samples were properly preserved, and sample custody was maintained from sample collection to receipt at the laboratory. The laboratory reports were complete and contained results for all samples and tests requested on the chain-of-custody (COC) forms. Samples were analyzed within the required method holding times, with the exceptions noted below and summarized in Table 2.

- Ninety-five 6PPDQ samples were extracted outside the 14-day extraction holding time specified in the QAPP but were within the laboratory's 35-day holding time. No data that met the laboratory's holding time were qualified.
- The 6PPDQ sample collected at COUMI on February 7, 2023, was extracted outside of QAPP and laboratory holding time (64 days vs. laboratory's 35-day holding time) and qualified as estimated.
- The 6PPDQ sample collected at COUMI on March 2, 2023, was extracted outside of QAPP and laboratory holding time (41 days vs. laboratory's 35-day holding time) and qualified as estimated.
- All four 6PPDQ samples collected on February 21, 2024, were analyzed outside of QAPP holding time (30 vs. 28 days after extraction) and qualified as estimated.
- All four 6PPDQ samples collected on March 7, 2024, were analyzed outside of QAPP holding time (30 vs. 28 days after extraction) and qualified as estimated.
- All four 6PPDQ samples collected on April 25, 2024, were analyzed outside of QAPP holding time (35–36 vs. 28 days after extraction) and qualified as estimated.
- All four 6PPDQ samples collected on May 21, 2024, were analyzed outside of QAPP holding time (35–36 vs. 28 days after extraction) and qualified as estimated.

Table 2. Data Qualified due to Holding Time Exceedances.								
Date Collected	Lab SDG	Sample Location	Parameter	Reason for Qualification	Flag			
2/7/2023	2301-068	COUMI	6PPDQ	Extraction holding time exceedance	J			
3/2/2023	2303-020	COUMI	6PPDQ	Extraction holding time exceedance	J			
2/21/2024	2402-276	All 4 locations	6PPDQ	Holding time exceedance	J			
3/7/2024	2403-095	All 4 locations	6PPDQ	Holding time exceedance	J			
4/24/2024	2404-348	All 4 locations	6PPDQ	Holding time exceedance	J			
5/21/2024	2405-300	All 4 locations	6PPDQ	Holding time exceedance	J			

Laboratory Reporting Limits – Acceptable with Discussion

The laboratory reporting limits met those established in the QAPP with some exceptions. 6PPDQ (47 samples) were slightly elevated (greater than or equal to 0.11 vs. 0.1 ng/L); however, data quality was not affected because the samples were detected above the reporting limit. Reporting limits for PAHs (38 samples) were slightly elevated (0.11–0.16 vs. 0.1 ng/L, or 0.011–0.022 vs. 0.01 ng/L), with some undetected values; however, the increased RLs were slight, and data quality was not affected. No data were qualified based on laboratory reporting limits.

Method Blank Analysis - Acceptable with Qualification

Method blanks were analyzed at the required frequency. Method blanks did not contain levels of target analytes above the laboratory reporting limits, with the following exceptions:

- The method blank analyzed with 6PPDQ samples collected on July 11, 2023, had a detection above the reporting limit (0.12 ng/L vs. reporting limit of 0.1). One associated sample, COUMO, was qualified as estimated because the concentration was within five times the concentration detected in the method blank, as specified in the QAPP addendum (Herrera 2022).
- The method blank analyzed with 6PPDQ samples collected on October 5, 2023, had a detection above the reporting limit (0.178 ng/L vs. reporting limit of 0.1). One associated sample, COUMI, was qualified as estimated because the concentration was within five times the concentration detected in the method blank.
- The method blank analyzed with 6PPDQ samples collected on October 10, 2023, had a detection above the reporting limit (0.178 ng/L vs. reporting limit of 0.1). One associated sample, COUMI, was qualified as estimated because the concentration was within five times the concentration detected in the method blank.

- The method blank analyzed with 6PPDQ samples collected on October 24, 2023, had a detection above the reporting limit (0.231 ng/L vs. reporting limit of 0.1). One associated sample, COUMI, was qualified as estimated because the concentration was within five times the concentration detected in the method blank.
- While the method blank analyzed with 6PPDQ samples collected in January 2023 (January 8, 12, and 20) was undetected, the reporting limit was elevated (0.65 ng/L vs. goal of 0.1 ng/L). The laboratory qualified the method blank result as estimated due to low surrogate recovery for the method blank (3 percent vs. minimum 30 percent) but noted that the method of quantification produces data that are recovery corrected. To account for potential undetected blank contamination, the one associated sample result (COUMI on January 20, 2023 [0.57 ng/L]) below the blank reporting limit was qualified as estimated (flagged J).

Data qualified due to method blank results are listed in Table 3.

	Table 3. Data Qualified due to Method Blank Results.											
Date Collected	Lab SDG	Sample Location	Parameter	Reason for Qualification	Flag							
7/11/2023	2307-049	COUMO	6PPDQ	Method blank contamination	J							
1/20/2023	2301-173	COUMI	6PPDQ	Elevated method blank reporting limit	J							
10/5/2023	2310-056	COUMI	6PPDQ	Method blank contamination	J							
10/10/2023	2310-116	COUMI	6PPDQ	Method blank contamination	J							
10/24/2023	2310-287	COUMI	6PPDQ	Method blank contamination	J							

Laboratory Control Sample Analysis – Acceptable

Laboratory control samples (LCS) were analyzed with project samples for PAHs at the required frequency. The percent recovery values for all parameters met the criteria established in the QAPP.

Surrogate Standard Recovery Analysis – Acceptable with Qualification

Surrogate standards were analyzed with project samples for PAHs and 6PPDQ. With the exceptions noted below and provided in Table 4, the percent recovery values met the control limits established in the QAPP.

 Surrogate standards were analyzed for samples COUMO, TOSMO, and TOSMI collected on February 7, 2023, for 6PPDQ. The percent recoveries were below the criteria (2, 11, and 22 percent vs. minimum 30 percent). The corresponding project sample results were qualified as estimated.

- A surrogate standard was analyzed for sample COUMO collected on March 2, 2023, for 6PPDQ. The percent recovery was below the criteria (6 percent vs. minimum 30 percent). The project sample result was qualified as estimated.
- Surrogate standards were analyzed for samples COUMO and TOSMO collected on April 27, 2023, for 6PPDQ. The percent recoveries were below the criteria (12 and 23 percent vs. minimum 30 percent). The corresponding project sample results were qualified as estimated.
- A surrogate standard was analyzed for sample TOSMO collected on January 8, 2024, for 6PPDQ. The percent recovery was below the criteria (25 percent vs. minimum 30 percent). The result for TOSMO was qualified as estimated.

Table 4. Data Qualified due to Surrogate Standard Recovery.										
Date Collected	Lab SDG	Sample Location	Parameter	Reason for Qualification	Flag					
2/7/2023	2301-068	COUMO, TOSMO, TOSMI	6PPDQ	Low surrogate recovery	J					
3/2/2023	2303-020	COUMO	6PPDQ	Low surrogate recovery	J					
4/27/2023	2304-315	COUMO, TOSMO	6PPDQ	Low surrogate recovery	J					
1/8/2024	2401-067	TOSMO	6PPDQ	Low surrogate recovery	J					

Laboratory Duplicate Analysis – Acceptable

Due to the low rate of detection, LCS duplicate samples were analyzed for PAHs rather than duplicates of project samples. The relative percent difference (RPD) was calculated for each analyte where both duplicate values were greater than five times the reporting limit (RL). The difference between duplicate values was calculated if the detected compound concentration was less than five times the RL in either the sample or the duplicate. The RPD values or difference values met the control limits established by the laboratory or specified method.

Field Duplicate Analysis – Acceptable with Discussion

Field duplicates were analyzed for 6PPDQ and PAHs at a frequency of once per quarter (goal of 8 duplicates). However, only 7 duplicates were collected during the project period. A duplicate was not collected in Quarter 4 of WY2024 because it was planned for the third storm, which was not sampled due to dry weather that quarter.

The RPD was calculated for each analyte where both the values were greater than five times the RL. The difference between the duplicate values was calculated if the detected compound concentration was less than five times the RL in either the sample or the field duplicate. The RPD or difference values met the control limits established in the QAPP.

Definition of Data Qualifiers

The following are data qualifier definitions (Table 5) applied for this project.

	Table 5. Data Qualifier Definitions.									
Data Qualifier	Definition									
J	Value is an estimate based on analytical results									
R	Value is rejected based on analytical results									
U	Value is below the reporting limit									
UJ	Value is below the reporting limit and is an estimate based on analytical results									

References

Herrera. 2015. Redmond Paired Watershed Study Quality Assurance Project Plan. Prepared by Herrera Environmental Consultants, Inc., Seattle, Washington. December 31.

Herrera. 2022. Addendum 1 to the Quality Assurance Project Plan for the Redmond Paired Watershed Study. Prepared by Herrera Environmental Consultants, Inc., Seattle, Washington. June 8.

Appendix B

Tabular Summary Statistics for 6PPD-quinone and Polycyclic Aromatic Hydrocarbons

Та	Table B-1. Summary Statistics for 6PPD-quinone (ng/L) by Station, Street Sweeping Treatment,											
			a	nd Sampli	ing Event Type.							
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected				
			М	onthly Swee	ping - Storm Event	s						
TOSMI	11	3.3	8.5	19.2	21.6	81.4	13.1	100%				
TOSMO	11	1.3	4.0	8.8	12.6	20.9	8.5	100%				
COUMI	11	1.1	3.0	7.4	10.9	16.8	7.8	100%				
COUMO	11	1.5	6.4	20	22.7	64.1	16.3	100%				
			Twice	Monthly Sw	eeping - Storm Ev	ents						
TOSMI	11	5.2	11.5	16.4	21.9	41.1	10.4	100%				
TOSMO	11	1.3	4.4	7.3	13.3	17.2	8.9	100%				
COUMI	11	0.2	3.8	7.6	11.4	22.8	7.6	100%				
COUMO	11	6.1	30.4	38.5	47.9	55.8	17.5	100%				
				All St	orm Events							
TOSMI	22	3.3	10.1	17.4	21.8	81.4	11.7	100%				
TOSMO	22	1.3	4.3	7.9	12.8	20.9	8.5	100%				
COUMI	22	0.2	3.7	7.5	10.9	22.8	7.3	100%				
COUMO	22	1.5	14.4	26.4	44.4	64.1	30.0	100%				
				Monthly Swe	eping - Base Flow							
TOSMI	4	0.6	1.5	3.2	5.5	8.4	4.0	100%				
TOSMO	4	0.6	1.0	2.7	4.3	4.3	3.3	100%				
COUMI	4	0.1	0.4	0.5	0.8	1.5	0.4	75%				
COUMO	4	0.4	1.6	2.1	3.5	7.7	1.8	100%				
			Twi	ce Monthly S	Sweeping - Base Flo	wc						
TOSMI	4	0.7	1.6	2.3	3.0	3.5	1.4	100%				
TOSMO	4	0.2	0.5	1.0	1.5	1.8	1.1	100%				
COUMI	4	0.3	0.3	0.3	0.4	0.5	0.2	100%				
COUMO	4	0.4	0.6	0.9	1.3	1.6	0.8	100%				
					Base Flow							
TOSMI	8	0.6	1.5	2.3	3.7	8.4	2.2	100%				
TOSMO	8	0.2	0.6	1.3	2.4	4.3	1.8	100%				
COUMI	8	0.1	0.3	0.4	0.5	1.5	0.3	88%				
COUMO	8	0.4	0.6	1.4	2.0	7.7	1.5	100%				

ng/L: nanograms per Liter

1	Table B-2. Summary Statistics for 1-Methylnaphthalene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.											
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected				
	.,				eping - Storm Ever		ge	70 Detected				
TOSMI	11	0.048	0.049	0.050	0.053	0.055	0.003	0%				
TOSMO	11	0.037	0.049	0.050	0.058	0.065	0.008	0%				
COUMI	11	0.04	0.050	0.050	0.055	0.065	0.005	0%				
COUMO	11	0.048	0.050	0.055	0.055	0.065	0.005	0%				
			Twice	Monthly S	weeping - Storm E	vents						
TOSMI	11	0.048	0.049	0.050	0.050	0.050	0.001	0%				
TOSMO	11	0.048	0.049	0.049	0.050	0.060	0.001	0%				
COUMI	11	0.048	0.049	0.049	0.050	0.050	0.002	0%				
COUMO	11	0.048	0.050	0.050	0.055	0.080	0.005	0%				
					Storm Events							
TOSMI	22	0.048	0.049	0.050	0.050	0.055	0.001	0%				
TOSMO	22	0.037	0.049	0.050	0.055	0.065	0.007	0%				
COUMI	22	0.04	0.049	0.050	0.050	0.065	0.002	0%				
COUMO	22	0.048	0.05	0.055	0.055	0.080	0.005	0%				
			N		eeping - Base Flov	1						
TOSMI	4	0.048	0.050	0.053	0.056	0.060	0.007	0%				
TOSMO	4	0.048	0.048	0.049	0.050	0.050	0.001	0%				
COUMI	4	0.049	0.049	0.052	0.055	0.055	0.006	0%				
COUMO	4	0.05	0.050	0.050	0.054	0.065	0.004	0%				
					Sweeping - Base F							
TOSMI	4	0.049	0.049	0.050	0.050	0.050	0.001	0%				
TOSMO	4	0.048	0.049	0.049	0.052	0.060	0.003	0%				
COUMI	4	0.048	0.053	0.055	0.059	0.070	0.006	0%				
COUMO	4	0.042	0.046	0.049	0.053	0.060	0.006	0%				
					Base Flow							
TOSMI	8	0.048	0.049	0.050	0.051	0.060	0.002	0%				
TOSMO	8	0.048	0.048	0.049	0.050	0.060	0.001	0%				
COUMI	8	0.048	0.049	0.055	0.055	0.070	0.006	0%				
COUMO	8	0.042	0.050	0.050	0.053	0.065	0.003	0%				

7	Table B-3. Summary Statistics for 2-Methylnaphthalene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.											
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected				
				onthly Swe	eping - Storm Even	ts						
TOSMI	11	0.048	0.049	0.050	0.053	0.055	0.003	0%				
TOSMO	11	0.037	0.049	0.050	0.058	0.065	0.008	0%				
COUMI	11	0.04	0.050	0.050	0.055	0.065	0.005	0%				
COUMO	11	0.048	0.050	0.055	0.055	0.065	0.005	0%				
			Twice	Monthly S	weeping - Storm E	vents						
TOSMI	11	0.048	0.049	0.050	0.050	0.050	0.001	0%				
TOSMO	11	0.048	0.049	0.049	0.050	0.060	0.001	0%				
COUMI	11	0.048	0.049	0.049	0.050	0.050	0.002	0%				
COUMO	11	0.048	0.050	0.050	0.055	0.080	0.005	0%				
				All S	Storm Events							
TOSMI	22	0.048	0.049	0.050	0.050	0.055	0.001	0%				
TOSMO	22	0.037	0.049	0.050	0.055	0.065	0.007	0%				
COUMI	22	0.04	0.049	0.050	0.050	0.065	0.002	0%				
COUMO	22	0.048	0.050	0.055	0.055	0.080	0.005	0%				
				∕lonthly Sw	eeping - Base Flow	1						
TOSMI	4	0.048	0.050	0.053	0.056	0.060	0.007	0%				
TOSMO	4	0.048	0.048	0.049	0.050	0.050	0.001	0%				
COUMI	4	0.049	0.049	0.052	0.055	0.055	0.006	0%				
COUMO	4	0.05	0.050	0.050	0.054	0.065	0.004	0%				
			Twic	e Monthly	Sweeping - Base F							
TOSMI	4	0.049	0.049	0.050	0.050	0.050	0.001	0%				
TOSMO	4	0.048	0.049	0.049	0.052	0.060	0.003	0%				
COUMI	4	0.048	0.053	0.055	0.059	0.070	0.006	0%				
COUMO	4	0.042	0.046	0.049	0.053	0.060	0.006	0%				
					Base Flow							
TOSMI	8	0.048	0.049	0.050	0.051	0.060	0.002	0%				
TOSMO	8	0.048	0.048	0.049	0.050	0.060	0.001	0%				
COUMI	8	0.048	0.049	0.055	0.055	0.070	0.006	0%				
COUMO	8	0.042	0.050	0.050	0.053	0.065	0.003	0%				

Table B-4. Summary Statistics for Acenaphthene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type. 25th Percentile Median Minimum 75th Percentile Maximum % Detected Ν Interquartile Range Monthly Sweeping - Storm Events TOSMI 11 0.048 0.049 0.050 0.053 0.055 0.003 0% 0.037 0.049 0.050 0.058 0.065 0.008 TOSMO 11 0% COUMI 11 0.050 0.050 0.055 0.065 0.005 0.040 0% COUMO 11 0.048 0.050 0.055 0.055 0.065 0.005 0% Twice Monthly Sweeping -Storm Events TOSMI 11 0.048 0.050 0.050 0.001 0% 0.049 0.050 TOSMO 11 0.048 0.049 0.049 0.050 0.060 0.001 0% COUMI 11 0.048 0.049 0.049 0.050 0.050 0.002 0% 0.050 0.050 COUMO 11 0.048 0.055 0.080 0.005 0% All Storm Events TOSMI 22 0.048 0.049 0.050 0.050 0.055 0.001 0% TOSMO 22 0.037 0.049 0.050 0.055 0.065 0.007 0% COUMI 22 0.040 0.049 0.050 0.050 0.065 0.002 0% 22 COUMO 0.048 0.050 0.055 0.055 0.080 0.005 0% Monthly Sweeping - Base Flow 0.060 TOSMI 0.048 0.050 0.053 0.007 4 0.056 0% 4 TOSMO 0.048 0.048 0.049 0.050 0.050 0.001 0% 4 COUMI 0.049 0.049 0.052 0.055 0.055 0.006 0% 4 соимо 0.050 0.050 0.050 0.054 0.065 0.004 0% Twice Monthly Sweeping - Base Flow TOSMI 4 0.049 0.049 0.050 0.050 0.050 0.001 0% TOSMO 4 0.048 0.049 0.049 0.052 0.060 0.003 0% 4 COUMI 0.048 0.053 0.055 0.059 0.070 0.006 0% 4 соимо 0.046 0.049 0.053 0.006 0.042 0.060 0% All Base Flow TOSMI 8 0.048 0.049 0.050 0.051 0.060 0.002 0% 8 TOSMO 0.048 0.048 0.049 0.050 0.060 0.001 0% 0.055 COUMI 8 0.048 0.049 0.055 0.070 0.006 0% 8 COUMO 0.042 0.050 0.050 0.053 0.065 0.003 0%

Tal	Table B-5. Summary Statistics for Acenaphthylene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.											
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected				
			M	onthly Swee	ping - Storm Event	İS	<u> </u>					
TOSMI	11	0.048	0.049	0.050	0.053	0.055	0.003	0%				
TOSMO	11	0.037	0.049	0.050	0.058	0.065	0.008	0%				
COUMI	11	0.040	0.050	0.050	0.055	0.065	0.005	0%				
COUMO	11	0.048	0.050	0.055	0.055	0.065	0.005	0%				
			Twice	Monthly Sv	veeping - Storm Ev	ents/						
TOSMI	11	0.048	0.049	0.050	0.050	0.050	0.001	0%				
TOSMO	11	0.048	0.049	0.049	0.050	0.060	0.001	0%				
COUMI	11	0.048	0.049	0.049	0.050	0.050	0.002	0%				
COUMO	11	0.048	0.050	0.050	0.055	0.080	0.005	0%				
	r	, ,		_	torm Events							
TOSMI	22		0.049	0.050	0.050		0.001	0%				
TOSMO	22	0.037	0.049	0.050	0.055	0.065	0.007	0%				
COUMI	22		0.049	0.050	0.050		0.002	0%				
COUMO	22	0.048	0.050	0.055	0.055	0.080	0.005	0%				
	Т	T T			eeping - Base Flow							
TOSMI	4		0.050	0.053	0.056		0.007	0%				
TOSMO	4		0.048	0.049	0.050	0.050	0.001	0%				
COUMI	4		0.049	0.052	0.055	0.055	0.006	0%				
COUMO	4	0.050	0.050	0.050	0.054	0.065	0.004	0%				
	Ι .			ce Monthly S								
TOSMI	4		0.049	0.050	0.050		0.001	0%				
TOSMO	4		0.049	0.049	0.052	0.060	0.003	0%				
COUMI	4		0.053	0.055	0.059	0.070	0.006	0%				
COUMO	4	0.042	0.046	0.049	0.053	0.060	0.006	0%				
TOCAL	0	0.040	0.040		Base Flow	0.000	0.002	00/				
TOSMI TOSMO	8		0.049 0.048	0.050 0.049	0.051 0.050	0.060 0.060	0.002	0% 0%				
	_											
COUMI	8		0.049	0.055	0.055	0.070	0.006	0%				
COUMO	8	0.042	0.050	0.050	0.053	0.065	0.003	0%				

Table B-6. Summary Statistics for Benz[a]anthracene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type. Ν Minimum 25th Percentile Median 75th Percentile Maximum Interquartile Range % Detected Monthly Sweeping - Storm Events TOSMI 11 0.005 0.005 0.005 0.006 0.026 0.001 9% 0.005 0.012 9% TOSMO 11 0.005 0.006 0.006 0.001 0.005 соимі 11 0.004 0.006 0.011 0.046 0.006 27% 0.005 COUMO 11 0.005 0.006 0.006 0.010 0.000 9% Twice Monthly Sweeping - Storm Events TOSMI 11 0.005 0.005 0.005 0.005 0.011 0.000 18% TOSMO 11 0.005 0.005 0.005 0.005 0.014 0.000 9% соимі 0.005 0.005 0.005 0.011 0.022 0.006 11 45% COUMO 11 0.005 0.005 0.005 0.006 0.015 0.001 9% All Storm Events TOSMI 22 0.005 0.005 0.005 0.005 0.026 0.000 14% TOSMO 22 0.005 0.005 0.005 0.006 0.014 0.001 9% соимі 22 0.004 0.005 0.006 0.012 0.046 0.007 36% 0.005 0.006 0.006 0.015 COUMO 22 0.005 0.001 9% Monthly Sweeping - Base Flow TOSMI 0.005 0.005 0.005 0.006 0.006 0.001 0% TOSMO 0.005 0.005 0.005 0.005 0.005 0.000 0% COUMI 0.005 0.005 0.005 0.006 0.006 0.001 0% 0.005 0.005 0.005 0.007 COUMO 4 0.005 0.000 0% Twice Monthly Sweeping -Base Flow TOSMI 0.005 0.005 0.005 0.005 0.005 0.000 0% TOSMO 0.005 0.005 0.005 0.005 0.006 0.000 0% соимі 0.005 0.005 0.006 0.011 0.026 0.005 25% соимо 4 0.004 0.005 0.005 0.005 0.006 0.001 0% All Base Flow 0.005 TOSMI 8 0.005 0.005 0.005 0.006 0.000 0% 0.005 0.005 0.005 0.000 TOSMO 0.005 0.006 0% COUMI 0.005 0.005 0.006 0.006 0.026 0.001 13% COUMO 0.004 0.005 0.005 0.005 0.007 0.000 0%

Table B-7. Summary Statistics for Anthracene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type. Minimum 25th Percentile Median 75th Percentile Maximum Interquartile Range % Detected Ν Monthly Sweeping - Storm Events TOSMI 11 0.048 0.049 0.050 0.053 0.055 0.003 0% 0.049 TOSMO 11 0.037 0.050 0.058 0.065 0.008 0% COUMI 11 0.040 0.050 0.050 0.055 0.065 0.005 0% COUMO 11 0.048 0.050 0.055 0.055 0.065 0.005 0% Twice Monthly Sweeping - Storm Events TOSMI 11 0.048 0.049 0.050 0.050 0.050 0.001 0% TOSMO 0.048 0.049 0.049 0.050 0.060 0% 11 0.001 0.049 0.049 0.050 0.050 COUMI 11 0.048 0.002 0% 0.048 0.050 0.050 0.055 0.080 0% COUMO 11 0.005 All Storm Events TOSMI 22 0.048 0.049 0.050 0.050 0.055 0.001 0% 22 0.049 0.050 0.055 0.065 0% TOSMO 0.037 0.007 COUMI 22 0.049 0.050 0.050 0.065 0% 0.040 0.002 0.050 COUMO 22 0.048 0.055 0.055 0.080 0.005 0% Monthly Sweeping - Base Flow 0.048 0.007 TOSMI 4 0.050 0.053 0.056 0.060 0% 4 0.048 0.050 **TOSMO** 0.048 0.049 0.050 0.001 0% COUMI 4 0.049 0.049 0.052 0.055 0.055 0.006 0% 0.050 0.050 0.054 0% COUMO 4 0.050 0.065 0.004 Twice Monthly Sweeping -**Base Flow** TOSMI 4 0.049 0.049 0.050 0.050 0.050 0.001 0% TOSMO 4 0.048 0.049 0.049 0.052 0.060 0.003 0% COUMI 4 0.048 0.053 0.055 0.059 0.070 0.006 0% 4 0.046 0.053 0.060 0% COUMO 0.042 0.049 0.006 All Base Flow TOSMI 0.048 0.049 0.002 8 0.050 0.051 0.060 0% TOSMO 8 0.048 0.048 0.049 0.050 0.060 0.001 0% COUMI 8 0.048 0.049 0.055 0.055 0.070 0.006 0% 8 0.042 0.050 0.050 0.053 0.065 0.003 0% COUMO

Tab	Table B-8. Summary Statistics for Benzo(a)pyrene (ug/L) by Station, Street Sweeping Treatment,												
			aı	nd Sampl	ing Event Type	•							
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected					
			Mo	onthly Swee	eping - Storm Event	ts							
TOSMI	11	0.005	0.005	0.005	0.006	0.045	0.001	18%					
TOSMO	11	0.005	0.005	0.006	0.007	0.035	0.002	18%					
COUMI	11	0.004	0.005	0.006	0.007	0.063	0.002	18%					
COUMO	11	0.005	0.005	0.006	0.006	0.012	0.001	9%					
			Twice	Monthly Sv	weeping - Storm Ev	vents							
TOSMI	11	0.005	0.005	0.005	0.007	0.015	0.002	27%					
TOSMO	11	0.005	0.005	0.005	0.006	0.013	0.001	18%					
COUMI	11	0.005	0.005	0.005	0.013	0.021	0.008	36%					
COUMO	11	0.005	0.005	0.005	0.006	0.011	0.001	9%					
				All S	torm Events								
TOSMI	22	0.005	0.005	0.005	0.006	0.045	0.001	23%					
TOSMO	22	0.005	0.005	0.005	0.006	0.035	0.001	18%					
COUMI	22	0.004	0.005	0.005	0.011	0.063	0.006	27%					
COUMO	22	0.005	0.005	0.006	0.006	0.012	0.001	9%					
			N	∕lonthly Sw	eeping - Base Flow								
TOSMI	4	0.005	0.005	0.005	0.006	0.006	0.001	0%					
TOSMO	4	0.005	0.005	0.005	0.005	0.005	0.000	0%					
COUMI	4	0.005	0.005	0.005	0.006	0.006	0.001	0%					
COUMO	4	0.005	0.005	0.005	0.005	0.007	0.000	0%					
			Twic	e Monthly	Sweeping - Base Fl	ow							
TOSMI	4	0.005	0.005	0.005	0.005	0.005	0.000	0%					
TOSMO	4	0.005	0.005	0.005	0.005	0.006	0.000	0%					
COUMI	4	0.005	0.005	0.009	0.014	0.020	0.009	50%					
COUMO	4	0.004	0.005	0.005	0.005	0.006	0.001	0%					
	All Base Flow												
TOSMI	8	0.005	0.005	0.005	0.005	0.006	0.000	0%					
TOSMO	8	0.005	0.005	0.005	0.005	0.006	0.000	0%					
COUMI	8	0.005	0.005	0.006	0.007	0.020	0.002	25%					
COUMO	8	0.004	0.005	0.005	0.005	0.007	0.000	0%					

Table B-9. Summary Statistics for Benzo(b)fluoranthene (ug/L) by Station, Street Sweeping											
			Treatme	ent, and	Sampling Even	t Type.					
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected			
				,	eping - Storm Even	its		<u>-</u>			
TOSMI	11	0.0050	0.005	0.008	0.014	0.087	0.009	45%			
TOSMO	11	0.0050	0.005	0.006	0.007	0.017	0.002	18%			
COUMI	11	0.0050	0.005	0.006	0.013	0.095	0.007	36%			
COUMO	11	0.0050	0.005	0.006	0.006	0.021	0.001	18%			
			Twice	Monthly S	weeping - Storm E	vents					
TOSMI	11	0.0050	0.005	0.015	0.020	0.028	0.015	64%			
TOSMO	11	0.0050	0.005	0.006	0.014	0.033	0.009	45%			
COUMI	11	0.0050	0.005	0.015	0.023	0.043	0.018	64%			
COUMO	11	0.0050	0.005	0.006	0.016	0.034	0.011	36%			
				All S	Storm Events						
TOSMI	22	0.0050	0.005	0.011	0.018	0.087	0.013	55%			
TOSMO	22	0.0050	0.005	0.006	0.012	0.033	0.007	32%			
COUMI	22	0.0050	0.005	0.008	0.021	0.095	0.016	50%			
COUMO	22	0.0050	0.005	0.006	0.010	0.034	0.005	27%			
			N	∕lonthly Sw	eeping - Base Flow	1					
TOSMI	4	0.0050	0.005	0.005	0.006	0.006	0.001	0%			
TOSMO	4	0.0050	0.005	0.005	0.005	0.005	0.000	0%			
COUMI	4	0.0050	0.005	0.005	0.006	0.006	0.001	0%			
COUMO	4	0.0050	0.005	0.006	0.008	0.014	0.003	25%			
			Twic	e Monthly	Sweeping - Base F	low					
TOSMI	4	0.0050	0.005	0.005	0.005	0.005	0.000	0%			
TOSMO	4	0.0050	0.005	0.005	0.005	0.006	0.000	0%			
COUMI	4	0.0050	0.005	0.014	0.028	0.044	0.023	50%			
COUMO	4	0.0040	0.005	0.005	0.005	0.006	0.001	0%			
				All	Base Flow						
TOSMI	8	0.0050	0.005	0.005	0.005	0.006	0.000	0%			
TOSMO	8	0.0050	0.005	0.005	0.005	0.006	0.000	0%			
COUMI	8	0.0050	0.005	0.006	0.010	0.044	0.005	25%			
COUMO	8	0.0040	0.005	0.005	0.006	0.014	0.001	13%			

Table B-10. Summary Statistics for Benzo(ghi)perylene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type. 25th Percentile Median 75th Percentile Ν Minimum Maximum **Interquartile Range** % Detected Monthly Sweeping - Storm Events TOSMI 11 0.005 0.005 0.005 0.043 0.001 18% 0.006 TOSMO 0.005 0.005 0.006 0.007 0.055 0.002 18% 11 COUMI 0.004 0.005 0.006 0.009 0.052 0.004 11 27% COUMO 11 0.005 0.005 0.006 0.006 0.017 0.001 9% Twice Monthly Sweeping - Storm Events TOSMI 11 0.005 0.005 0.005 0.013 0.022 800.0 45% TOSMO 0.005 0.005 0.005 800.0 0.012 0.003 27% 11 COUMI 0.005 0.005 0.005 0.013 0.023 800.0 11 36% COUMO 11 0.005 0.005 0.005 0.006 0.019 0.001 18% All Storm Events 22 0.005 0.005 0.012 0.043 TOSMI 0.005 0.007 32% TOSMO 22 0.005 0.005 0.005 0.007 0.055 0.002 23% COUMI 22 0.004 0.005 0.006 0.013 0.052 800.0 32% COUMO 0.005 0.006 0.006 0.019 22 0.005 0.001 14% Monthly Sweeping - Base Flow TOSMI 0.005 0.005 0.005 0.006 0.006 0.001 0% 4 TOSMO 0.005 0.005 0.005 0.005 0.005 0.000 0% COUMI 0.005 0.005 0.005 0.006 0.006 0.001 0% 4 COUMO 4 0.005 0.005 0.005 0.005 0.007 0.000 0% Twice Monthly Sweeping -Base Flow TOSMI 0.005 0.005 0.005 0.005 0.000 0% 4 0.005 TOSMO 0.005 0.005 0.005 0.005 0.006 0.000 0% COUMI 4 0.005 0.005 0.009 0.014 0.018 0.009 50% 4 0.005 0.005 COUMO 0.004 0.005 0.006 0.001 0% All Base Flow TOSMI 8 0.005 0.005 0.005 0.005 0.006 0.000 0% TOSMO 0.005 0.005 0.005 0.005 0.006 0.000 0% 8 8 0.005 0.006 0.007

0.018

0.007

0.005

0.002

0.000

25%

0%

ug/L: micrograms per Liter

8

0.005

0.004

0.005

0.005

COUMI

COUMO

Table B-11. Summary Statistics for Benzo(j,k)fluoranthene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.

	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected
			Montl	hly Sweepi	ng - Storm Event	:S		
TOSMI	11	0.005	0.005	0.005	0.006	0.021	0.001	18%
TOSMO	11	0.004	0.005	0.005	0.006	0.044	0.001	9%
COUMI	11	0.004	0.005	0.006	0.007	0.032	0.002	18%
COUMO	11	0.005	0.005	0.006	0.006	0.017	0.001	9%
			Twice Mc	onthly Swe	eping - Storm Ev	vents		
TOSMI	11	0.005	0.005	0.005	0.005	0.017	0.000	18%
TOSMO	11	0.005	0.005	0.005	0.005	0.006	0.000	0%
COUMI	11	0.005	0.005	0.005	0.005	0.012	0.000	9%
COUMO	11	0.005	0.005	0.005	0.006	0.008	0.001	0%
				All Stor	m Events			
TOSMI	22	0.005	0.005	0.005	0.005	0.021	0.000	18%
TOSMO	22	0.004	0.005	0.005	0.006	0.044	0.001	5%
COUMI	22	0.004	0.005	0.005	0.006	0.032	0.001	14%
COUMO	22	0.005	0.005	0.006	0.006	0.017	0.001	5%
			Mor	nthly Swee	oing - Base Flow			
TOSMI	4	0.005	0.005	0.005	0.006	0.006	0.001	0%
TOSMO	4	0.005	0.005	0.005	0.005	0.005	0.000	0%
COUMI	4	0.005	0.005	0.005	0.006	0.006	0.001	0%
COUMO	4	0.005	0.005	0.005	0.005	0.007	0.000	0%
			Twice M	1onthly Sw	eeping - Base Fl	ow		
TOSMI	4	0.005	0.005	0.005	0.005	0.005	0.000	0%
TOSMO	4	0.005	0.005	0.005	0.005	0.006	0.000	0%
COUMI	4	0.005	0.005	0.006	0.008	0.014	0.002	25%
COUMO	4	0.004	0.005	0.005	0.005	0.006	0.001	0%
				All Ba	se Flow			
TOSMI	8	0.005	0.005	0.005	0.005	0.006	0.000	0%
TOSMO	8	0.005	0.005	0.005	0.005	0.006	0.000	0%
COUMI	8		0.005	0.006	0.006	0.014	0.001	13%
COUMO	8	0.004	0.005	0.005	0.005	0.007	0.000	0%
ua/l·micr			·		·	· · · · · · · · · · · · · · · · · · ·	·	

Table B-12. Summary Statistics for Chrysene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.										
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected		
	L		Mo		eping - Storm Even		. ,			
TOSMI	11	0.005	0.005	0.006	0.013	0.058	0.008	36%		
TOSMO	11	0.005	0.005	0.006	0.007	0.040	0.002	18%		
COUMI	11	0.004	0.005	0.006	0.007	0.071	0.002	18%		
COUMO	11	0.005	0.005	0.006	0.006	0.017	0.001	9%		
			Twice	Monthly S	weeping - Storm E	vents				
TOSMI	11	0.005	0.005	0.005	0.016	0.026	0.011	45%		
TOSMO	11	0.005	0.005	0.005	0.006	0.050	0.001	18%		
COUMI	11	0.005	0.005	0.011	0.020	0.029	0.015	55%		
COUMO	11	0.005	0.005	0.005	0.006	0.022	0.001	18%		
				All S	Storm Events					
TOSMI	22	0.005	0.005	0.005	0.015	0.058	0.010	41%		
TOSMO	22	0.005	0.005	0.005	0.006	0.050	0.001	18%		
COUMI	22	0.004	0.005	0.006	0.018	0.071	0.013	36%		
COUMO	22	0.005	0.005	0.006	0.006	0.022	0.001	14%		
					eeping - Base Flow					
TOSMI	4	0.005	0.005	0.005	0.006	0.006	0.001	0%		
TOSMO	4	0.005	0.005	0.005	0.005	0.005	0.000	0%		
COUMI	4	0.005	0.005	0.005	0.006	0.006	0.001	0%		
COUMO	4	0.005	0.005	0.005	0.005	0.007	0.000	0%		
	ı				Sweeping - Base F					
TOSMI	4	0.005	0.005	0.005	0.005	0.005	0.000	0%		
TOSMO	4	0.005	0.005	0.005	0.005	0.006	0.000	0%		
COUMI	4	0.005	0.005	0.012	0.020	0.026	0.015	50%		
COUMO	4	0.004	0.005	0.005	0.005	0.006	0.001	0%		
	ı				Base Flow					
TOSMI	8	0.005	0.005	0.005	0.005	0.006	0.000	0%		
TOSMO	8	0.005	0.005	0.005	0.005	0.006	0.000	0%		
COUMI	8	0.005	0.005	0.006	0.009	0.026	0.004	25%		
COUMO	8	0.004	0.005	0.005	0.005	0.007	0.000	0%		

Ta	Table B-13. Summary Statistics for Dibenzo(a,h)anthracene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.											
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected				
			M	onthly Swee	eping - Storm Event	:S	,					
TOSMI	11	0.005	0.005	0.005	0.005	0.006	0.000	0%				
TOSMO	11	0.004	0.005	0.005	0.006	0.011	0.001	9%				
COUMI	11	0.004	0.005	0.006	0.007	0.016	0.002	18%				
COUMO	11	0.005	0.005	0.006	0.006	0.014	0.001	9%				
			Twice	Monthly Sv	veeping - Storm Ev	vents						
TOSMI	11	0.005	0.005	0.005	0.005	0.005	0.000	0%				
TOSMO	11	0.005	0.005	0.005	0.005	0.006	0.000	0%				
COUMI	11	0.005	0.005	0.005	0.005	0.005	0.000	0%				
COUMO	11	0.005	0.005	0.005	0.006	0.011	0.001	0%				
					torm Events							
TOSMI	22	0.005	0.005	0.005	0.005	0.006	0.000	0%				
TOSMO	22	0.004	0.005	0.005	0.006	0.011	0.001	5%				
COUMI	22	0.004	0.005	0.005	0.006	0.016	0.001	9%				
COUMO	22	0.005	0.005	0.006	0.006	0.014	0.001	5%				
	ı				eeping - Base Flow							
TOSMI	4	0.005	0.005	0.005	0.006	0.006	0.001	0%				
TOSMO	4	0.005	0.005	0.005	0.005	0.005	0.000	0%				
COUMI	4	0.005	0.005	0.005	0.006	0.006	0.001	0%				
COUMO	4	0.005	0.005	0.005	0.005	0.007	0.000	0%				
	ı			ce Monthly !								
TOSMI	4	0.005	0.005	0.005	0.005	0.005	0.000	0%				
TOSMO	4	0.005	0.005	0.005	0.005	0.006	0.000	0%				
COUMI	4	0.005	0.005	0.006	0.006	0.007	0.001	0%				
COUMO	4	0.004	0.005	0.005	0.005	0.006	0.001	0%				
	ı				Base Flow							
TOSMI	8		0.005	0.005	0.005	0.006	0.000	0%				
TOSMO	8	0.005	0.005	0.005	0.005	0.006	0.000	0%				
COUMI	8		0.005	0.006	0.006	0.007	0.001	0%				
COUMO	8	0.004	0.005	0.005	0.005	0.007	0.000	0%				

Table B-14. Summary Statistics for Fluoranthene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.									
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected	
					eping - Storm Even		<u> </u>		
TOSMI	11	0.048	0.049	0.050	0.053	0.055	0.003	0%	
TOSMO	11	0.037	0.049	0.050	0.058	0.065	0.009	0%	
COUMI	11	0.040	0.050	0.055	0.060	0.120	0.010	9%	
COUMO	11	0.048	0.050	0.055	0.055	0.065	0.005	0%	
			Twice	Monthly S	weeping - Storm E	vents			
TOSMI	11	0.048	0.049	0.050	0.050	0.050	0.001	0%	
TOSMO	11	0.048	0.049	0.049	0.050	0.180	0.001	9%	
COUMI	11	0.048	0.049	0.049	0.050	0.050	0.002	0%	
COUMO	11	0.048	0.050	0.050	0.055	0.080	0.005	0%	
					Storm Events				
TOSMI	22	0.048	0.049	0.050	0.050	0.055	0.001	0%	
TOSMO	22	0.037	0.049	0.050	0.055	0.180	0.007	5%	
COUMI	22	0.040	0.049	0.050	0.054	0.120	0.005	5%	
COUMO	22	0.048	0.050	0.055	0.055	0.080	0.005	0%	
	ı				eeping - Base Flow				
TOSMI	4	0.048	0.050	0.053	0.056	0.060	0.007	0%	
TOSMO	4	0.048	0.048	0.049	0.050	0.050	0.001	0%	
COUMI	4	0.049	0.049	0.052	0.055	0.055	0.006	0%	
COUMO	4	0.050	0.050	0.050	0.054	0.065	0.004	0%	
TOCM	1 4	0.049		e Monthly 0.050	Sweeping - Base F 0.050	0.050	0.001	00/	
TOSMI	4	0.049	0.049				0.001	0%	
TOSMO COUMI	4	0.048	0.049 0.053	0.049 0.055	0.052 0.059	0.060 0.070	0.003	0% 0%	
COUMO	4	0.048	0.033	0.033	0.059	0.070	0.006	0%	
All Base Flow									
TOSMI	8	0.048	0.049	0.050	0.051	0.060	0.002	0%	
TOSMO	8	0.048	0.049	0.030	0.051	0.060	0.002	0%	
COUMI	8	0.048	0.048	0.049	0.055	0.000	0.001	0%	
COUMO	8	0.042	0.050	0.050	0.053	0.065	0.003	0%	

Table B-15. Summary Statistics for Fluorene (ug/L) by Station, Street Sweeping Treatment, and										
Sampling Event Type.										
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected		
			N	Monthly Sweet	oing - Storm Events					
TOSMI	11	0.048	0.049	0.050	0.053	0.055	0.003	0%		
TOSMO	11	0.037	0.049	0.050	0.058	0.065	0.008	0%		
COUMI	11	0.040	0.050	0.050	0.055	0.065	0.005	0%		
COUMO	11	0.048	0.050	0.055	0.055	0.065	0.005	0%		
			Twic	e Monthly Sw	eeping - Storm Eve	ents				
TOSMI	11	0.048	0.049	0.050	0.050	0.050	0.001	0%		
TOSMO	11	0.048	0.049	0.049	0.050	0.060	0.001	0%		
COUMI	11	0.048	0.049	0.049	0.050	0.050	0.002	0%		
COUMO	11	0.048	0.050	0.050	0.055	0.080	0.005	0%		
				All Sto	orm Events					
TOSMI	22	0.048	0.049	0.050	0.050	0.055	0.001	0%		
TOSMO	22	0.037	0.049	0.050	0.055	0.065	0.007	0%		
COUMI	22	0.040	0.049	0.050	0.050	0.065	0.002	0%		
COUMO	22	0.048	0.050	0.055	0.055	0.080	0.005	0%		
				Monthly Swe	eping - Base Flow					
TOSMI	4	0.048	0.050	0.053	0.056	0.060	0.007	0%		
TOSMO	4	0.048	0.048	0.049	0.050	0.050	0.001	0%		
COUMI	4	0.049	0.049	0.052	0.055	0.055	0.006	0%		
COUMO	4	0.050	0.050	0.050	0.054	0.065	0.004	0%		
	Twice Monthly Sweeping - Base Flow									
TOSMI	4	0.049	0.049	0.050	0.050	0.050	0.001	0%		
TOSMO	4	0.048	0.049	0.049	0.052	0.060	0.003	0%		
COUMI	4	0.048	0.053	0.055	0.059	0.070	0.006	0%		
COUMO	4	0.042	0.046	0.049	0.053	0.060	0.006	0%		
All Base Flow										
TOSMI	8	0.048	0.049	0.050	0.051	0.060	0.002	0%		
TOSMO	8	0.048	0.048	0.049	0.050	0.060	0.001	0%		
COUMI	8	0.048	0.049	0.055	0.055	0.070	0.006	0%		
COUMO	8	0.042	0.050	0.050	0.053	0.065	0.003	0%		

Table B-16. Summary Statistics for Indeno(1,2,3-cd)pyrene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type. Minimum 25th Percentile 75th Percentile Median Maximum Interquartile Range % Detected Monthly Sweeping - Storm Events 0.005 0.001 TOSMI 11 0.005 0.005 0.006 0.042 18% TOSMO 0.005 0.005 0.006 0.002 11 0.007 0.027 18% COUMI 0.004 0.005 0.006 0.007 0.002 11 0.054 18% COUMO 11 0.005 0.005 0.006 0.006 0.019 0.001 9% Twice Monthly Sweeping - Storm Events TOSMI 11 0.005 0.005 0.005 0.012 0.018 0.007 45% TOSMO 11 0.005 0.005 0.005 0.006 0.015 0.001 18% COUMI 11 0.005 0.005 0.010 0.013 0.025 0.008 55% 0.005 0.002 COUMO 11 0.005 0.005 0.007 0.020 18% All Storm Events TOSMI 22 0.005 0.005 0.011 0.042 0.006 32% 0.005 0.005 0.005 **TOSMO** 22 0.005 0.006 0.027 0.001 18% 22 0.004 0.005 0.006 COUMI 0.012 0.054 0.007 36% COUMO 22 0.005 0.005 0.006 0.006 0.020 0.001 14% Monthly Sweeping - Base Flow TOSMI 4 0.005 0.005 0.005 0.006 0.006 0.001 0% 4 0.005 0.005 0.005 0.005 0.005 0.000 0% TOSMO COUMI 4 0.005 0.005 0.005 0.006 0.006 0.001 0% COUMO 4 0.005 0.005 0.005 0.005 0.007 0.000 0% Twice Monthly Sweeping - Base Flow TOSMI 4 0.005 0.005 0.005 0.005 0.005 0.000 0% TOSMO 4 0.005 0.005 0.005 0.005 0.006 0.000 0% 4 COUMI 0.005 0.005 0.010 0.017 0.025 0.011 50% 4 0.004 0.005 COUMO 0.005 0.005 0.006 0.001 0% All Base Flow TOSMI 8 0.005 0.005 0.005 0.005 0.006 0.000 0% TOSMO 8 0.005 0.005 0.005 0.005 0.006 0.000 0% 8 0.005 0.005 0.006 0.008 0.025 COUMI 0.003 25% COUMO 0.004 0.005 0.005 0.005 0.007 0.000

Table B-17. Summary Statistics for Naphthalene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type. Minimum Ν 25th Percentile Median 75th Percentile Maximum **Interquartile Range** % Detected Monthly Sweeping - Storm Events 0.048 0.003 TOSMI 11 0.049 0.050 0.053 0.055 0% TOSMO 11 0.037 0.049 0.050 0.058 0.065 800.0 0% COUMI 11 0.040 0.050 0.050 0.055 0.065 0.005 0% соимо 11 0.048 0.050 0.055 0.055 0.065 0.005 0% Twice Monthly Sweeping -Storm Events TOSMI 11 0.048 0.050 0.050 0.001 0% 0.049 0.050 11 0.048 0.049 0.049 0.050 0.060 0.001 TOSMO 0% COUMI 11 0.048 0.049 0.049 0.050 0.050 0.002 0% соимо 11 0.050 0.050 0.055 0.080 0.005 0.048 0% All Storm Events TOSMI 22 0.048 0.049 0.050 0.050 0.055 0.001 0% TOSMO 22 0.037 0.049 0.050 0.055 0.065 0.007 0% 0.049 COUMI 22 0.040 0.050 0.050 0.065 0.002 0% COUMO 22 0.048 0.050 0.055 0.055 0.080 0.005 0% Monthly Sweeping - Base Flow TOSMI 4 0.048 0.050 0.053 0.056 0.060 0.007 0% 4 0.050 0.001 TOSMO 0.048 0.048 0.049 0.050 0% COUMI 4 0.049 0.049 0.052 0.055 0.055 0.006 0% COUMO 4 0.050 0.050 0.054 0.065 0.004 0.050 0% Twice Monthly Sweeping - Base Flow TOSMI 4 0.049 0.049 0.050 0.050 0.050 0.001 0% TOSMO 4 0.048 0.049 0.049 0.052 0.060 0.003 0% 4 0.055 0.059 0.070 0.006 COUMI 0.048 0.053 0% COUMO 4 0.042 0.046 0.049 0.053 0.060 0.006 0%

All Base Flow

0.051

0.050

0.055

0.053

0.060

0.060

0.070

0.065

0.002

0.001

0.006

0.003

0%

0%

0%

0%

0.050

0.049

0.055

0.050

0.049

0.048

0.049

0.050

ug/L: micrograms per Liter

TOSMI

TOSMO

COUMI

COUMO

8

8

8

8

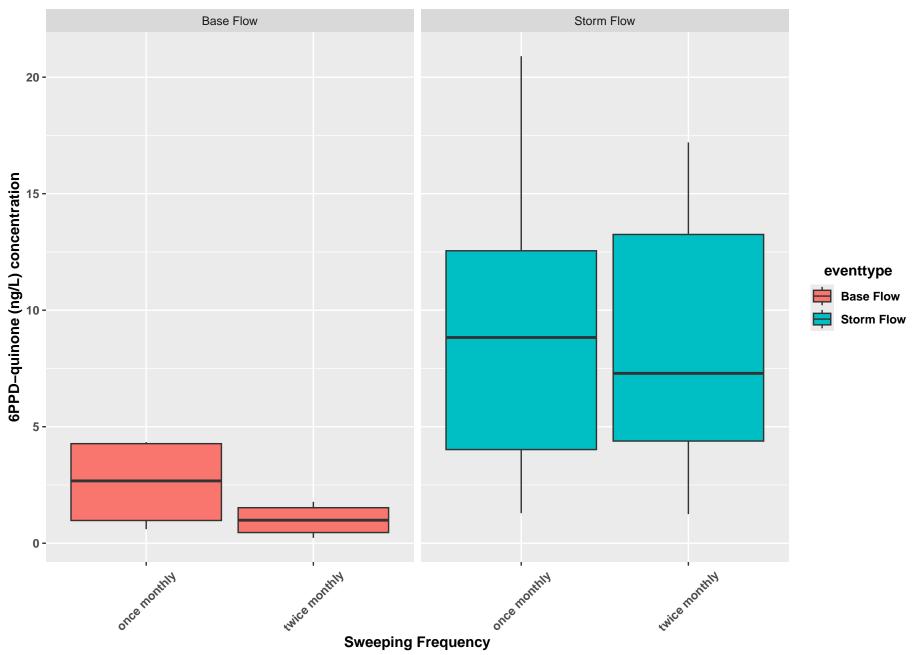
0.048

0.048

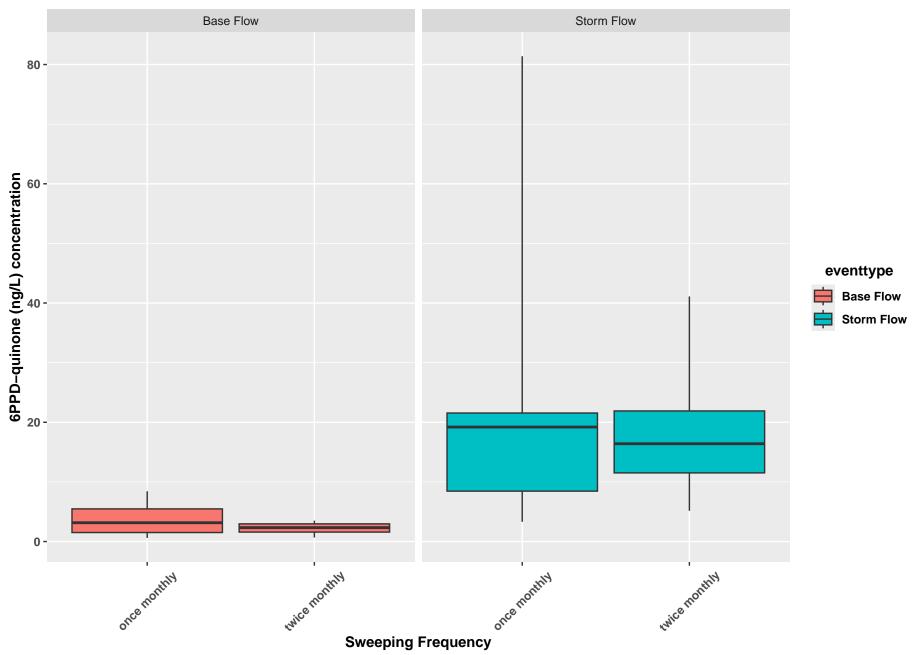
0.048

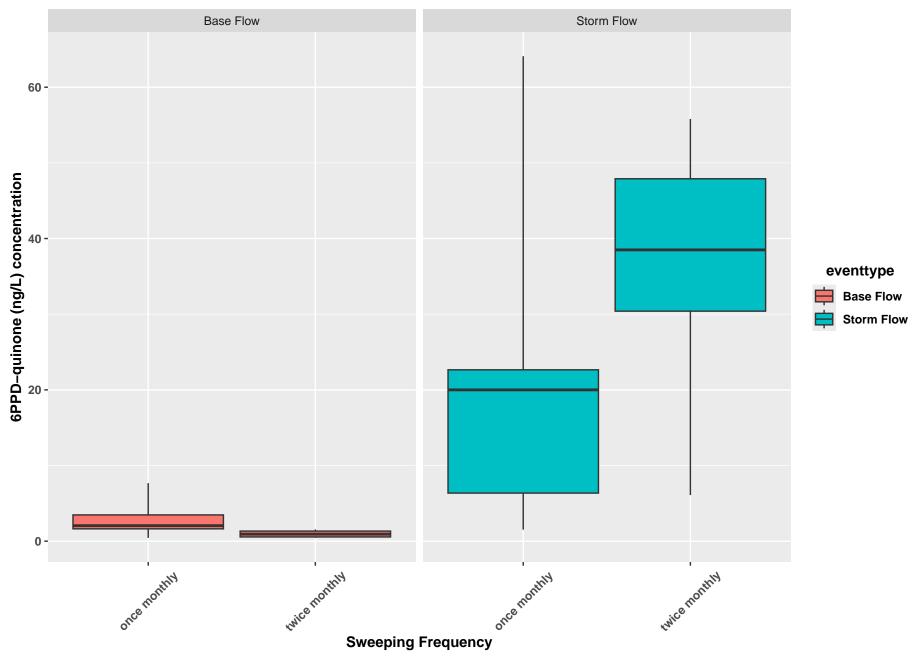
0.042

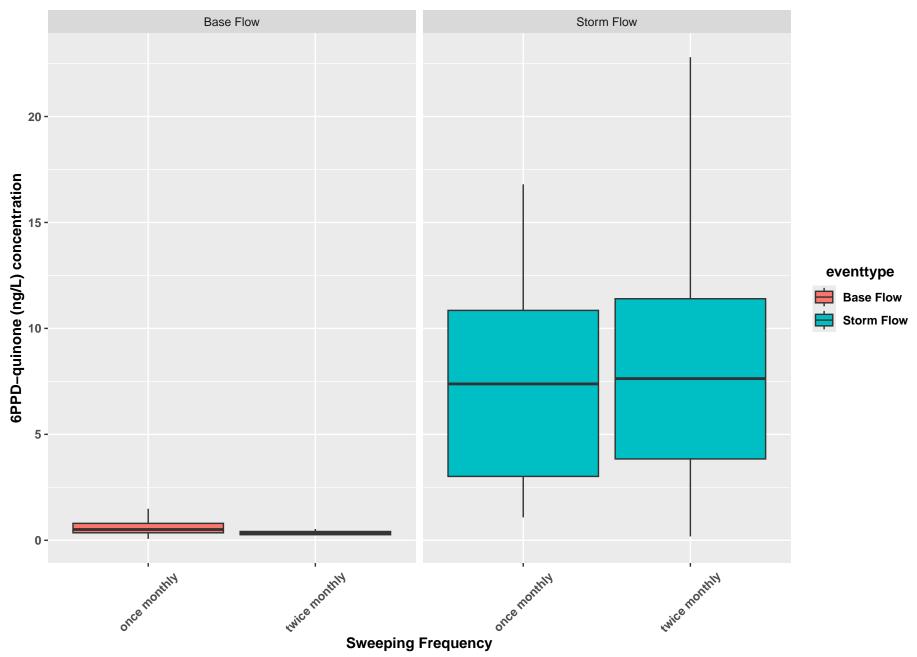
Table B-18. Summary Statistics for Phenanthrene (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.									
	N	B. #			<u> </u>		luturous d'Il Bours	0/ Data dad	
	N	Minimum	25th Percentile	Median	75th Percentile eping - Storm Even	Maximum	Interquartile Range	% Detected	
TOSMI	11	0.048	0.049		0.053	0.055	0.003	0%	
TOSMO	11	0.048	0.049	0.050	0.058	0.055	0.003		
COUMI	11		0.049	0.050	0.055	0.065	0.005		
COUMO	11	0.048	0.050	0.055	0.055	0.065	0.005		
COOIVIO		0.040			weeping - Storm E		0.003	070	
TOSMI	11	0.048	0.049	0.050	0.050	0.050	0.001	0%	
TOSMO	11		0.049	0.049	0.050	0.280	0.001	9%	
COUMI	11	0.048	0.049	0.049	0.050	0.050	0.002	0%	
соимо	11	0.048	0.050	0.050	0.055	0.080	0.005	0%	
	I				Storm Events				
TOSMI	22	0.048	0.049	0.050	0.050	0.055	0.001	0%	
TOSMO	22	0.037	0.049	0.050	0.055	0.280	0.007	5%	
COUMI	22	0.040	0.049	0.050	0.050	0.065	0.002	0%	
COUMO	22	0.048	0.050	0.055	0.055	0.080	0.005	0%	
			N	Monthly Sw	eeping - Base Flow				
TOSMI	4	0.048	0.050	0.053	0.056	0.060	0.007	0%	
TOSMO	4	0.048	0.048	0.049	0.050	0.050	0.001	0%	
COUMI	4	0.049	0.049	0.052	0.055	0.055	0.006	0%	
COUMO	4	0.050	0.050	0.050	0.054	0.065	0.004	0%	
			Twic	e Monthly	Sweeping - Base F				
TOSMI	4	0.049	0.049	0.050	0.050	0.050	0.001	0%	
TOSMO	4	0.048	0.049	0.049	0.052	0.060	0.003		
COUMI	4	0.048	0.053	0.055	0.059	0.070	0.006	0%	
COUMO	4	0.042	0.046	0.049	0.053	0.060	0.006	0%	
All Base Flow									
TOSMI	8	0.048	0.049	0.050	0.051	0.060	0.002	0%	
TOSMO	8		0.048	0.049	0.050	0.060	0.001	0%	
COUMI	8	0.048	0.049	0.055	0.055	0.070	0.006		
COUMO	8	0.042	0.050	0.050	0.053	0.065	0.003	0%	

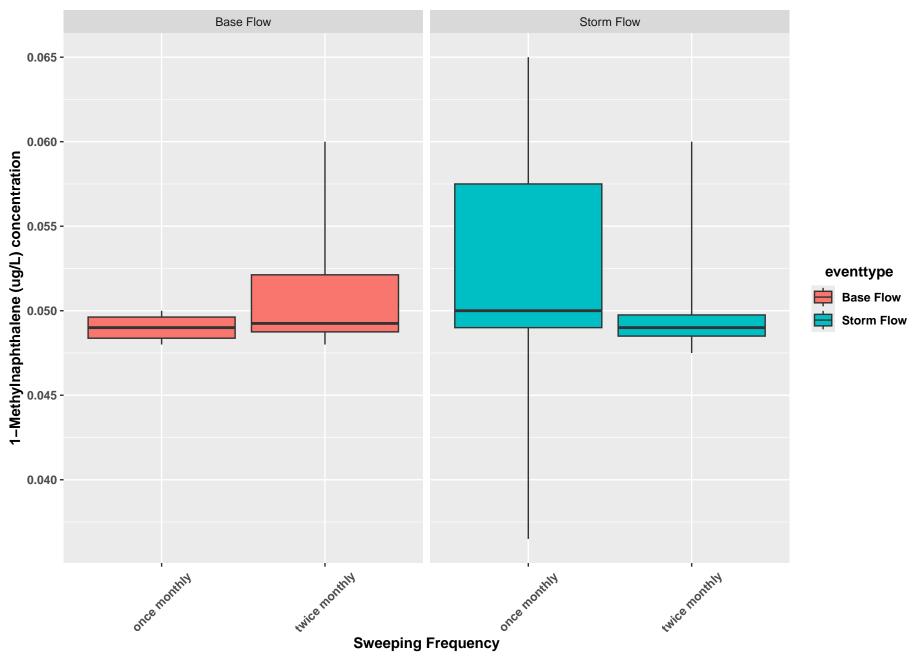

Table B-19. Summary Statistics for Pyrene (ug/L) by Station, Street Sweeping Treatment, and										
Sampling Event Type.										
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected		
Monthly Sweeping - Storm Events										
TOSMI	11	0.05	0.05	0.05	0.05	0.06	0.00	0%		
TOSMO	11	0.04	0.05	0.05	0.06	0.07	0.01	0%		
COUMI	11	0.04	0.05	0.06	0.06	0.11	0.01	9%		
COUMO	11	0.05	0.05	0.06	0.06	0.07	0.01	0%		
			Twice	Monthly S	weeping - Storm E	vents				
TOSMI	11	0.05	0.05	0.05	0.05	0.05	0.00	0%		
TOSMO	11	0.05	0.05	0.05	0.05	0.14	0.00	9%		
COUMI	11	0.05	0.05	0.05	0.05	0.05	0.00	0%		
COUMO	11	0.05	0.05	0.05	0.06	0.08	0.01	0%		
				All S	Storm Events					
TOSMI	22	0.05	0.05	0.05	0.05	0.06	0.00	0%		
TOSMO	22	0.04	0.05	0.05	0.06	0.14	0.01	5%		
COUMI	22	0.04	0.05	0.05	0.05	0.11	0.01	5%		
COUMO	22	0.05	0.05	0.06	0.06	0.08	0.01	0%		
			N	Nonthly Sw	reeping - Base Flow	I				
TOSMI	4	0.05	0.05	0.05	0.06	0.06	0.01	0%		
TOSMO	4	0.05	0.05	0.05	0.05	0.05	0.00	0%		
COUMI	4	0.05	0.05	0.05	0.06	0.06	0.01	0%		
COUMO	4	0.05	0.05	0.05	0.05	0.07	0.00	0%		
			Twic	e Monthly	Sweeping - Base F	low				
TOSMI	4	0.05	0.05	0.05	0.05	0.05	0.00	0%		
TOSMO	4	0.05	0.05	0.05	0.05	0.06	0.00	0%		
COUMI	4	0.05	0.05	0.06	0.06	0.07	0.01	0%		
COUMO	4	0.04	0.05	0.05	0.05	0.06	0.01	0%		
All Base Flow										
TOSMI	8	0.05	0.05	0.05	0.05	0.06	0.00	0%		
TOSMO	8	0.05	0.05	0.05	0.05	0.06	0.00	0%		
COUMI	8	0.05	0.05	0.06	0.06	0.07	0.01	0%		
COUMO	8	0.04	0.05	0.05	0.05	0.07	0.00	0%		

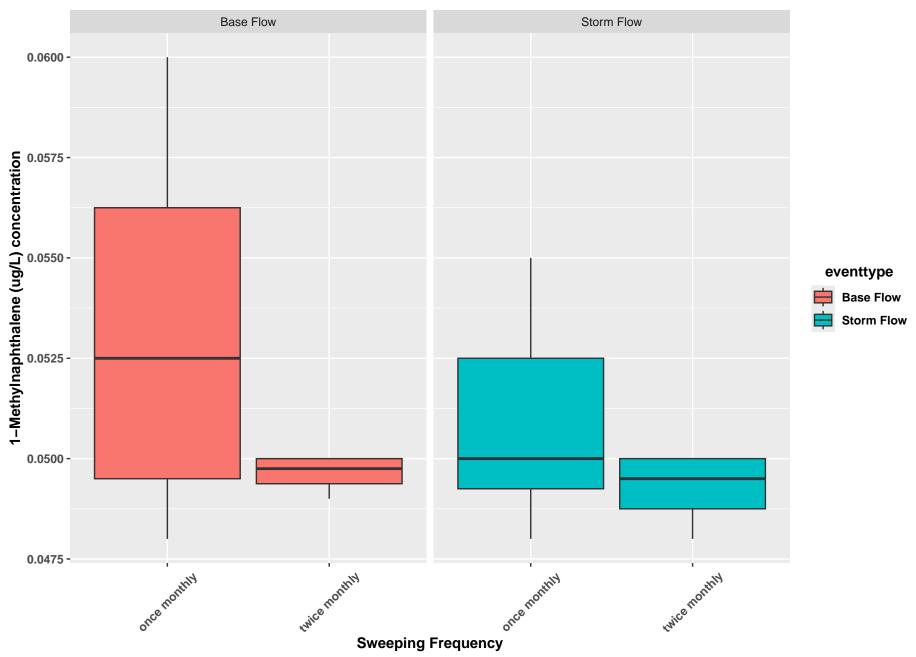
Appendix C

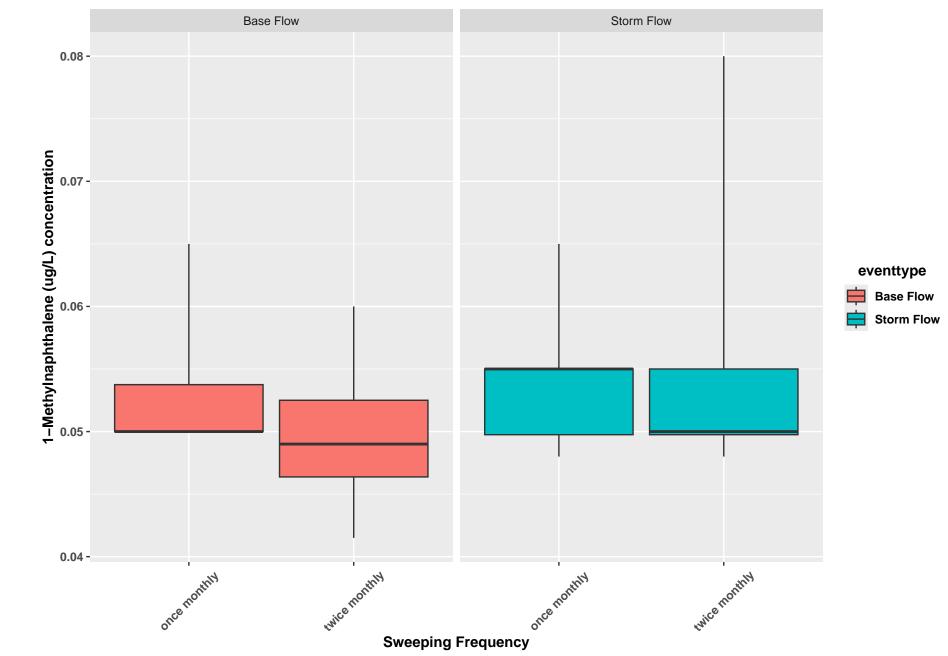

Box Plots for 6PPD-quinone and Polycyclic Aromatic Hydrocarbons

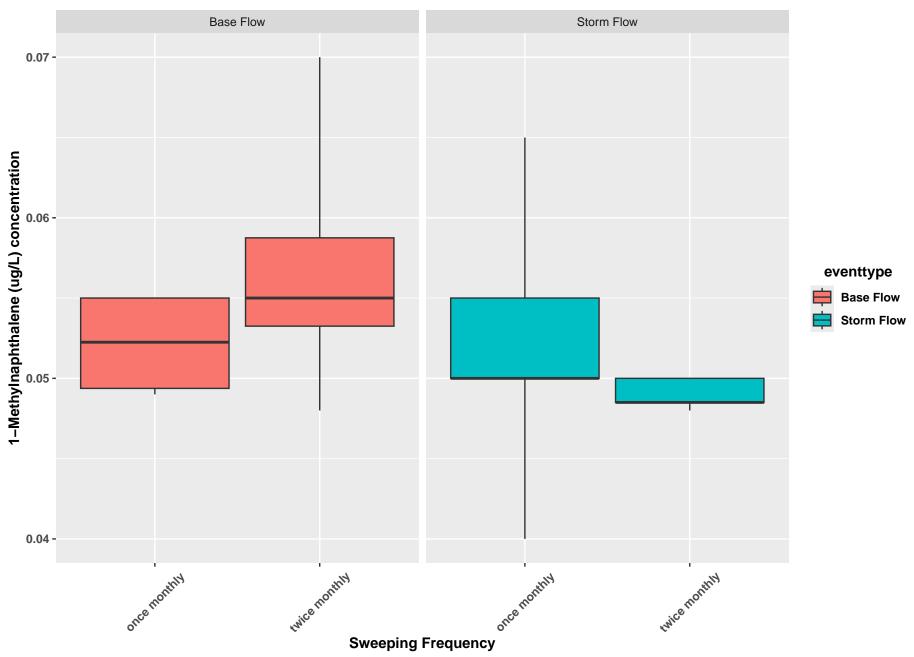


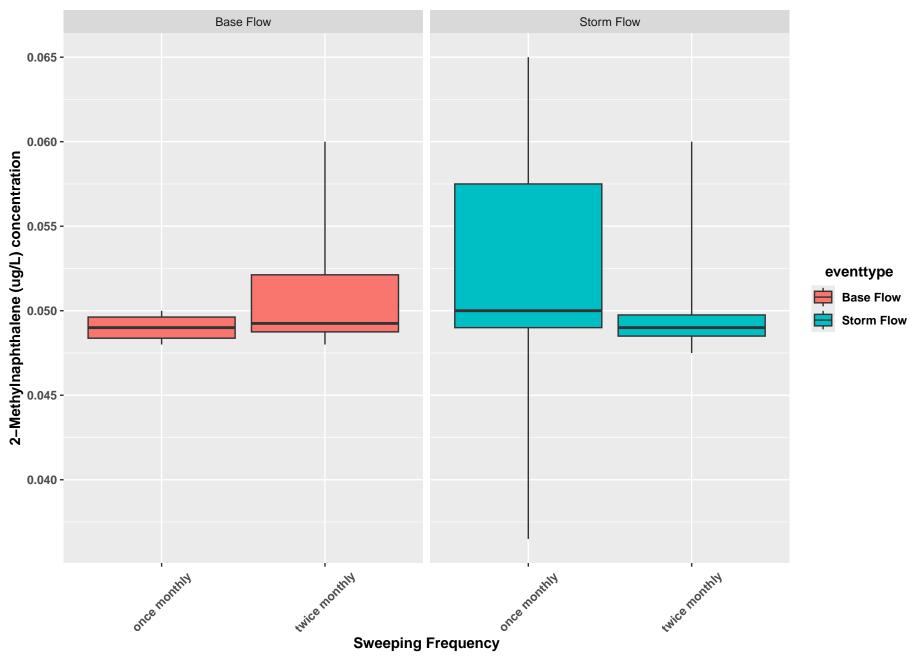


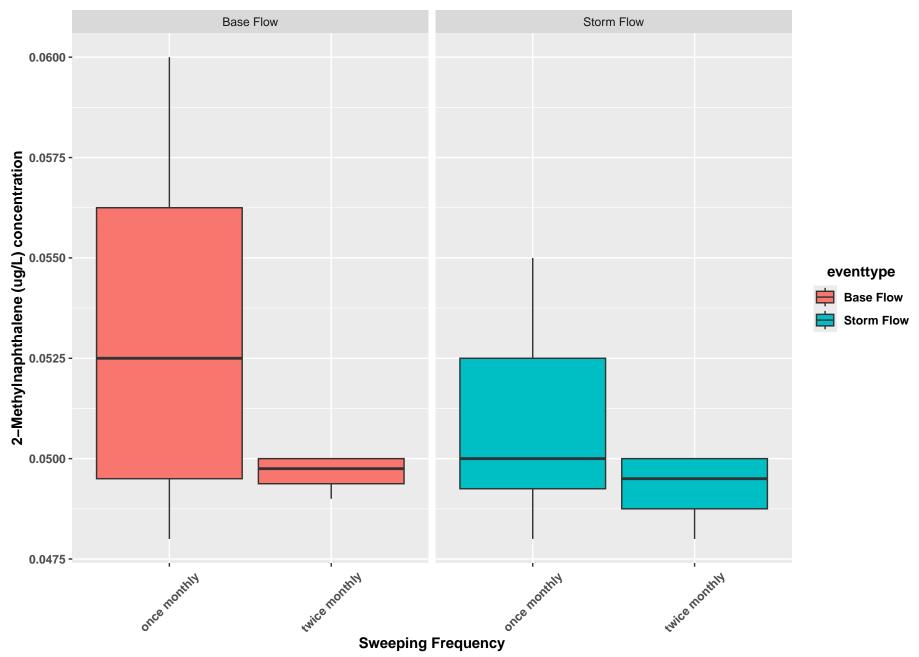


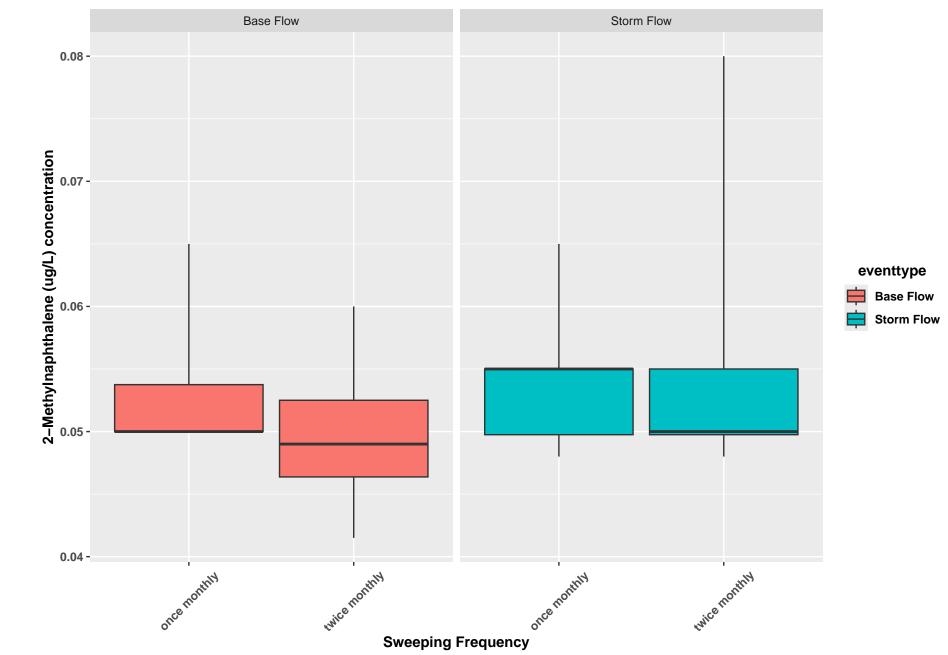


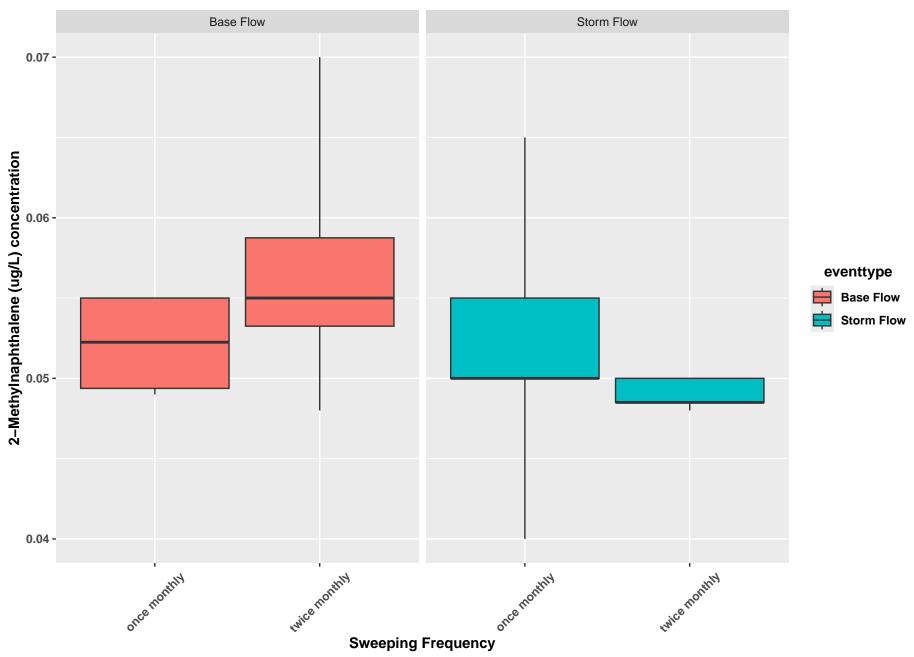


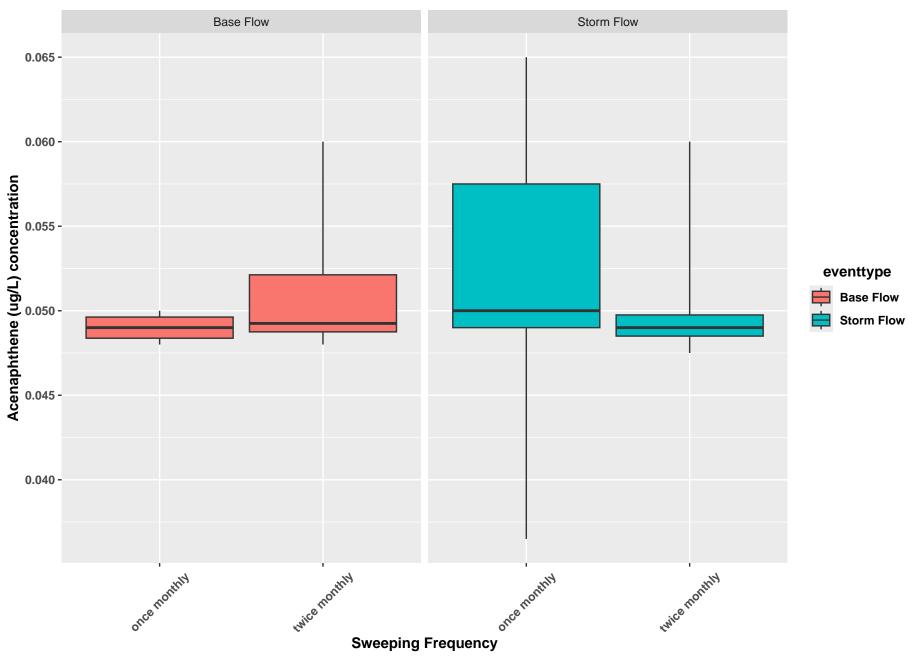


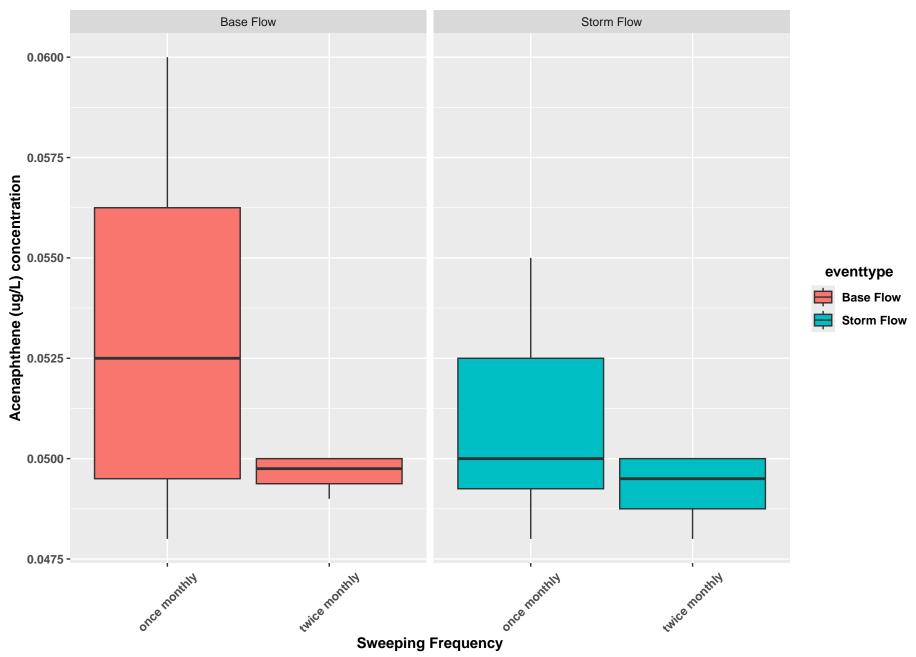


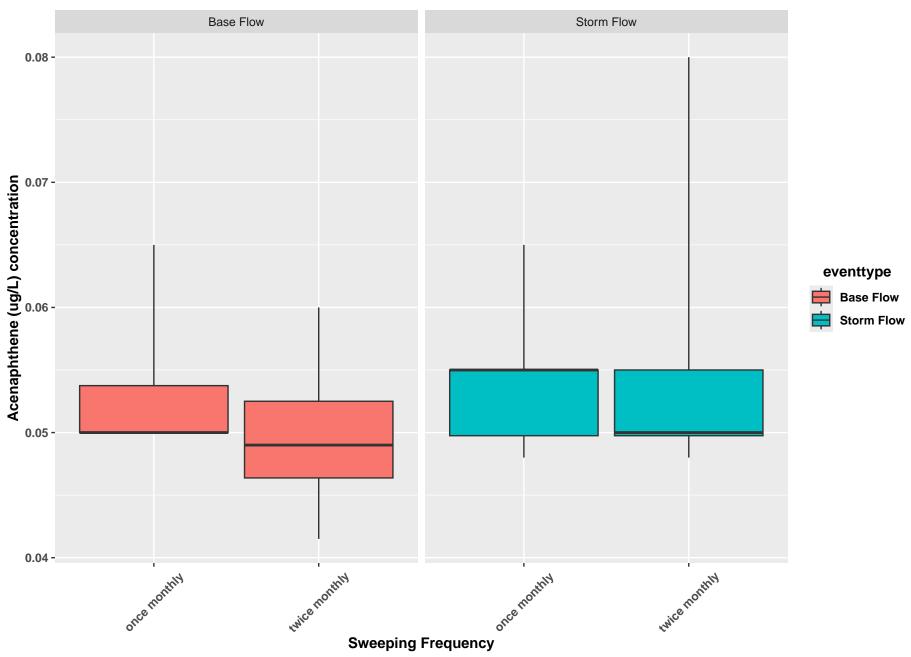


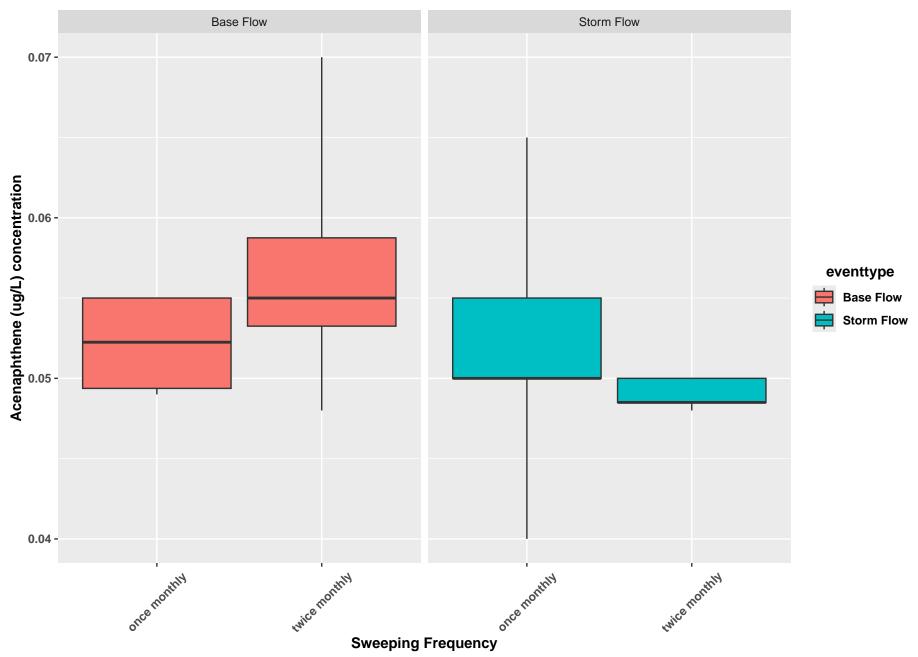


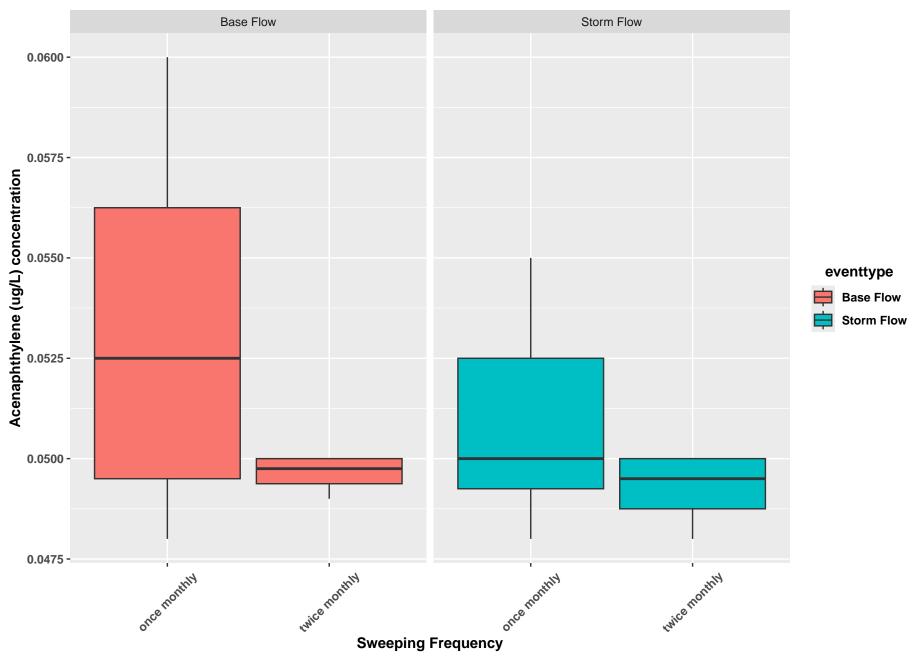


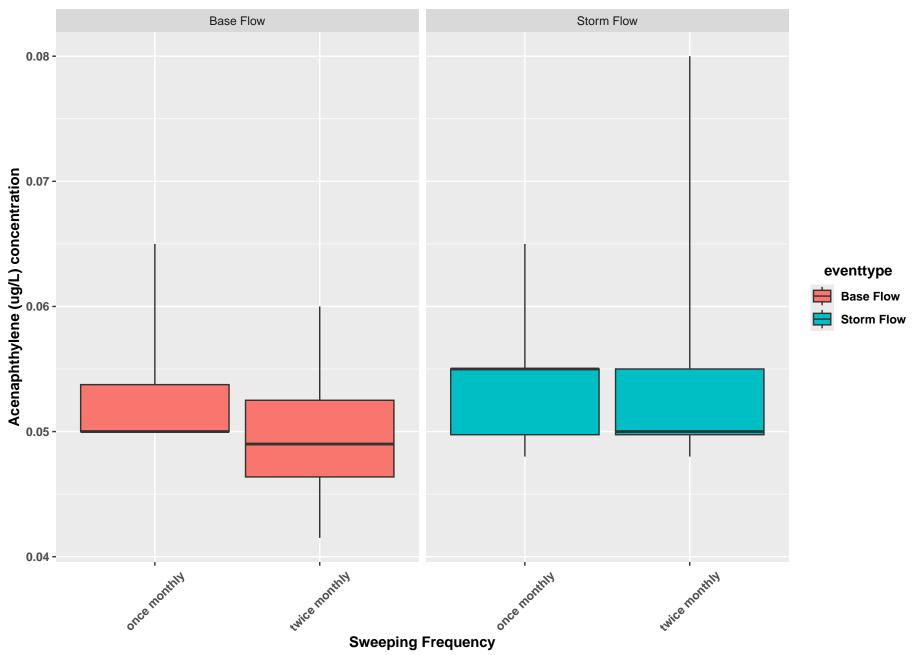


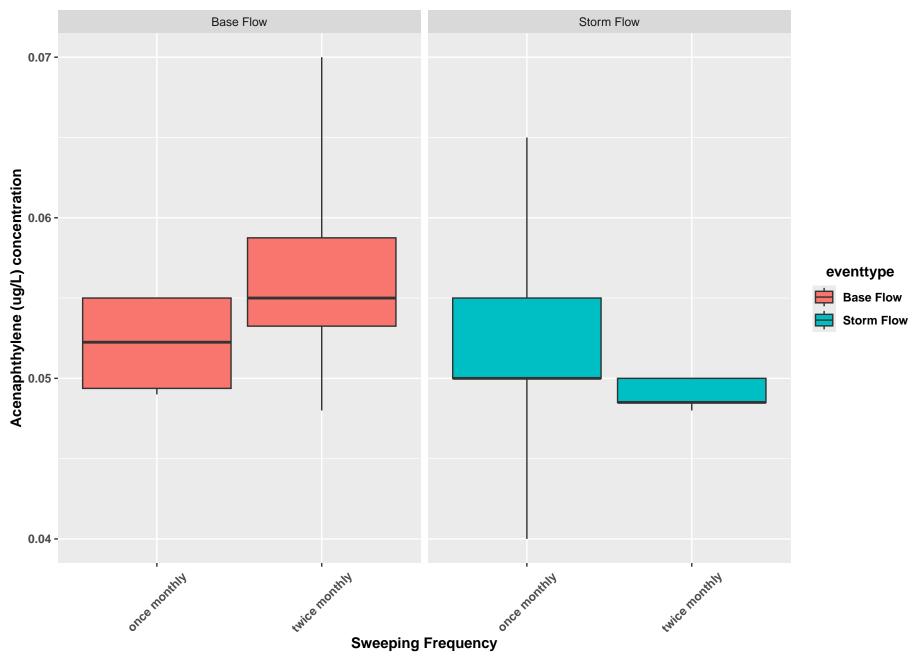


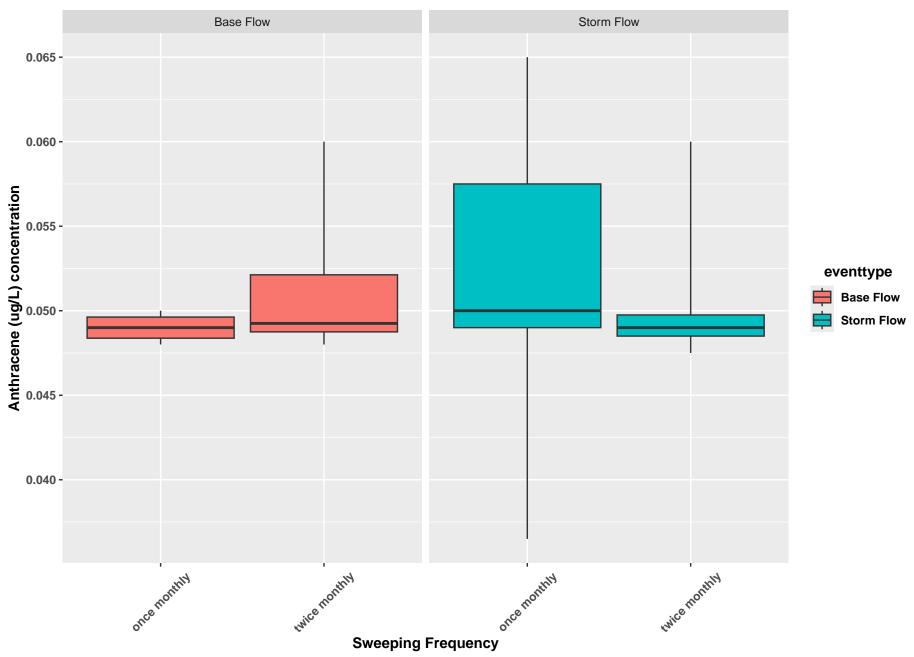


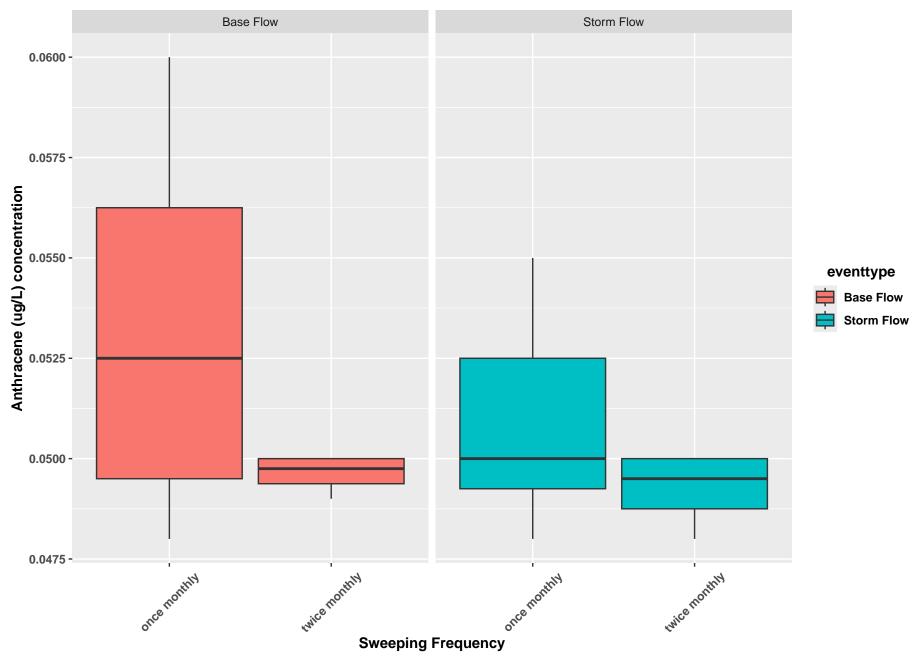


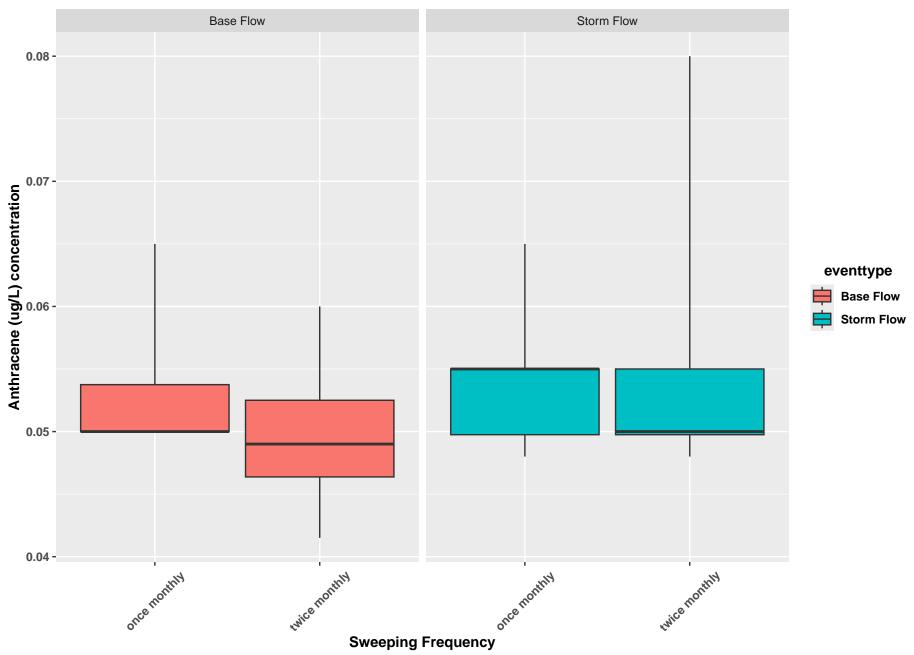


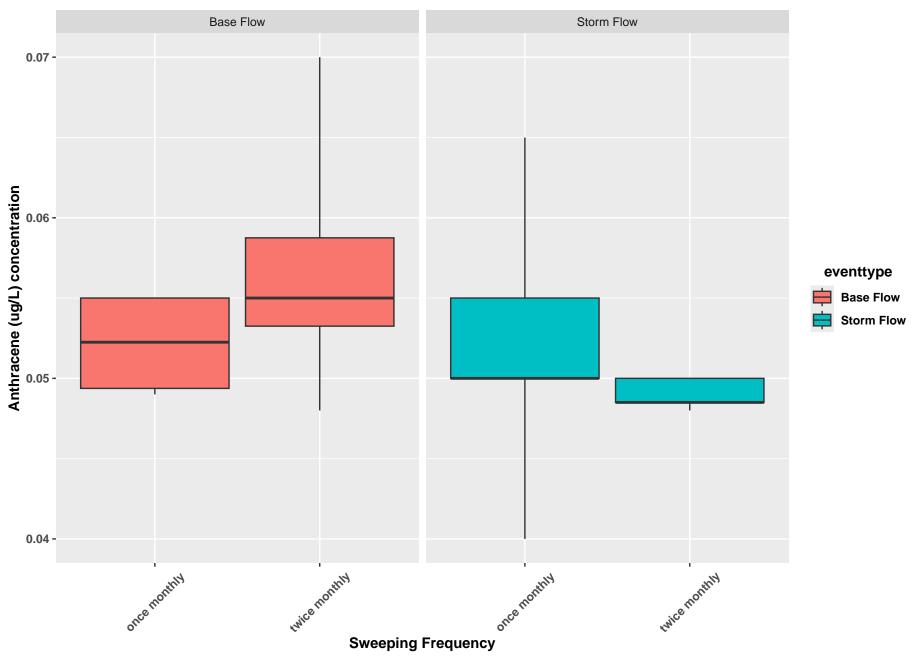


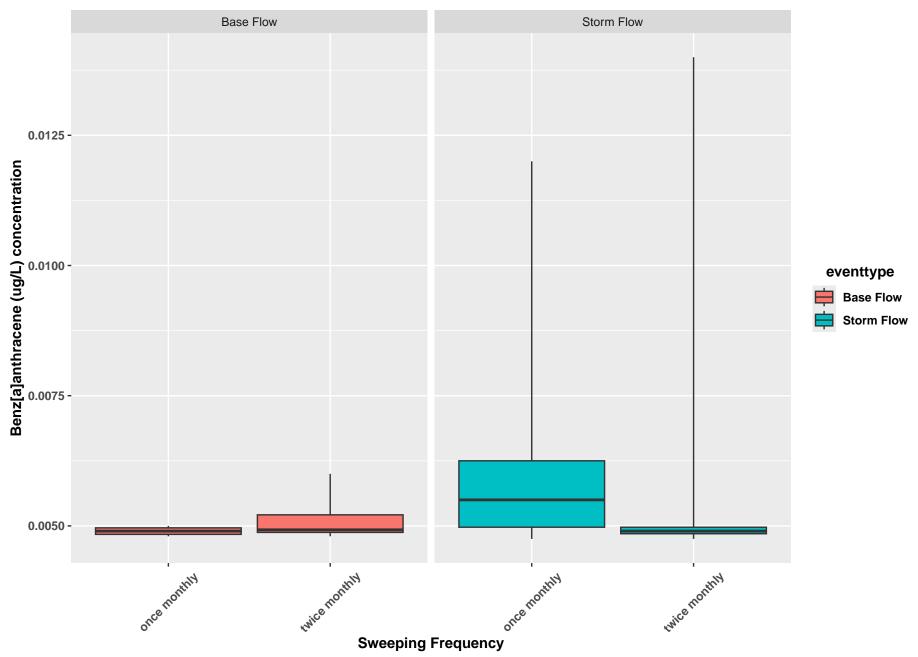


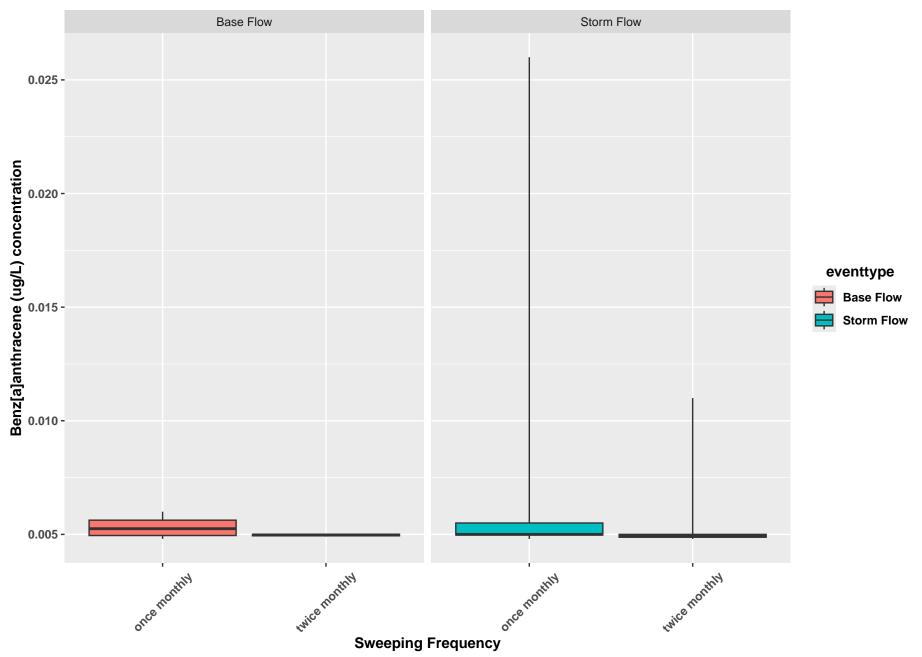


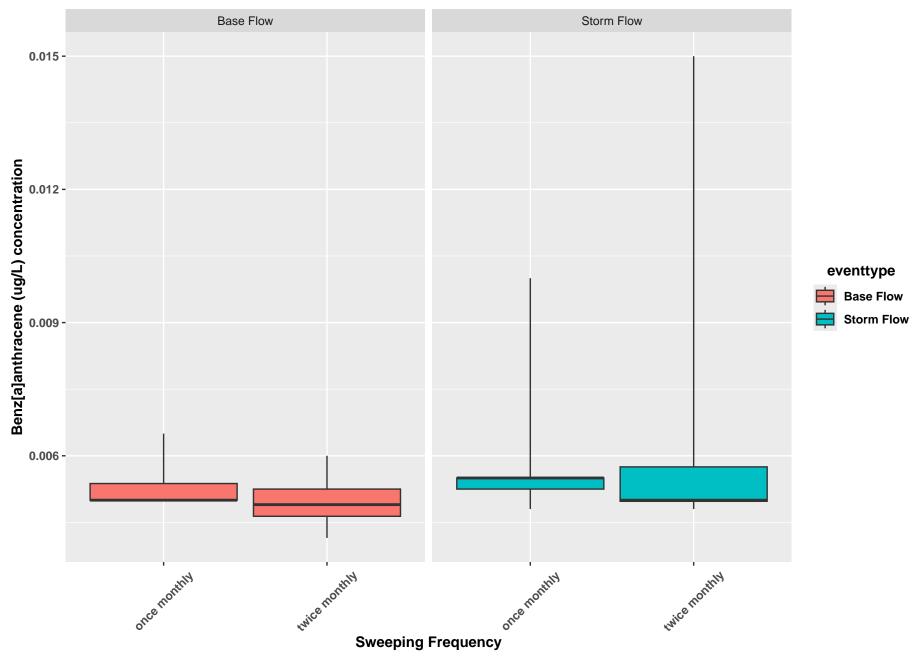


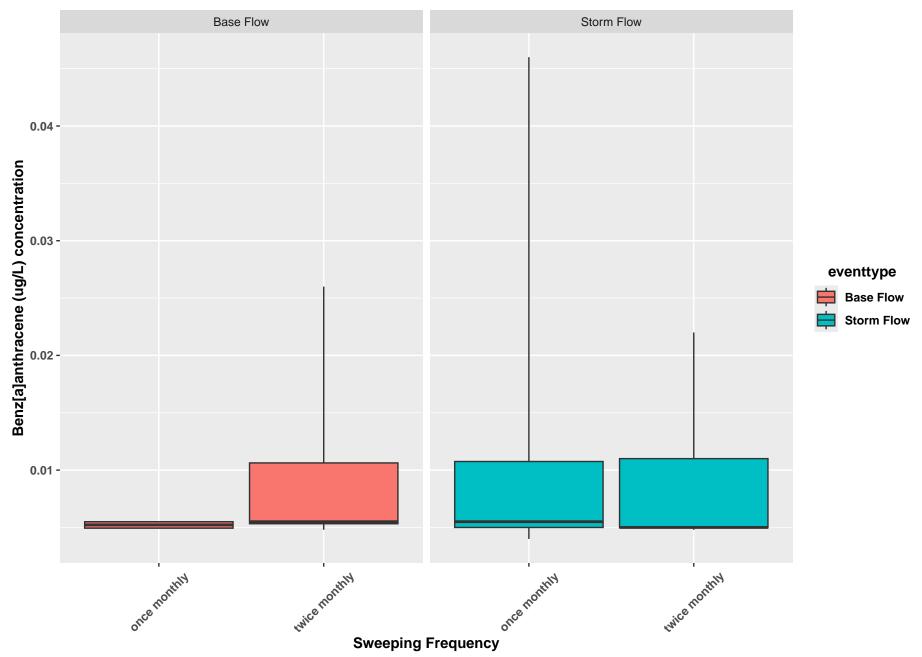


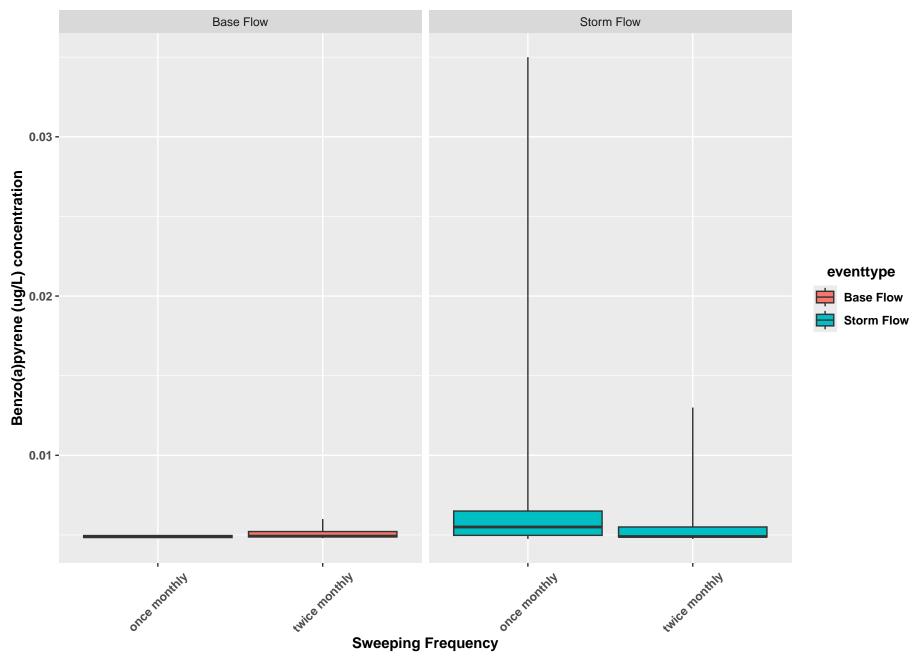


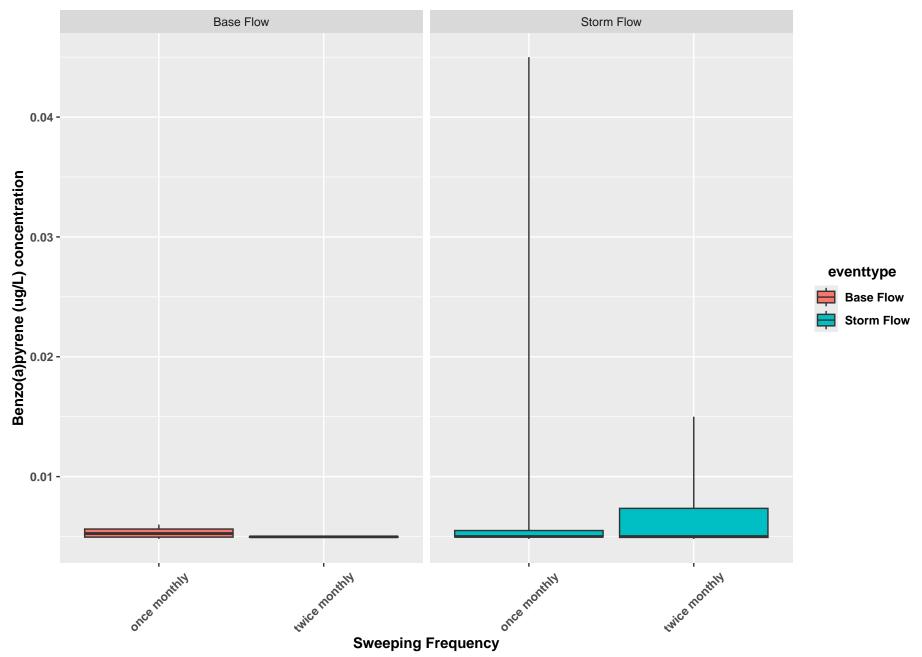


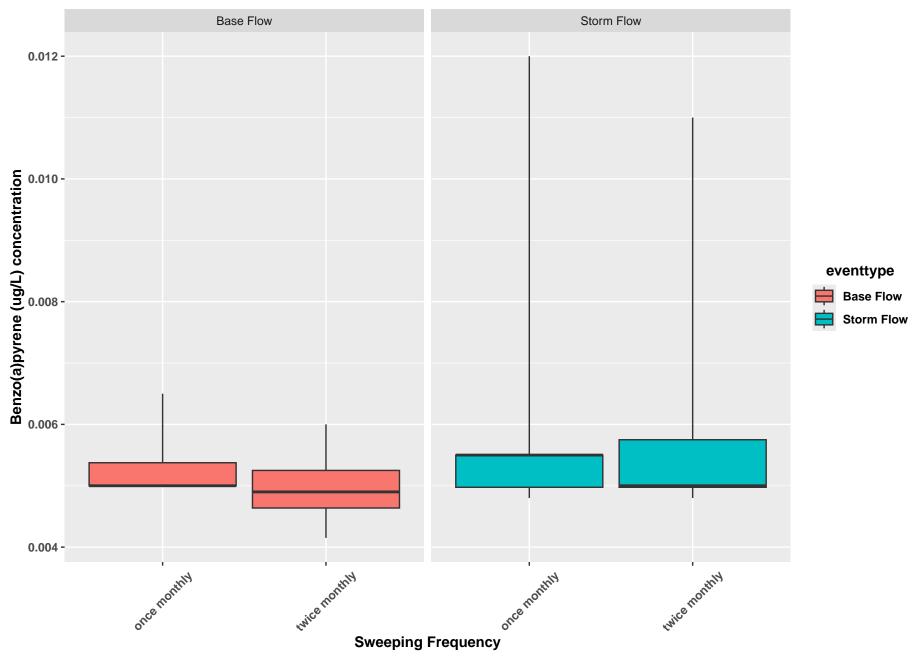


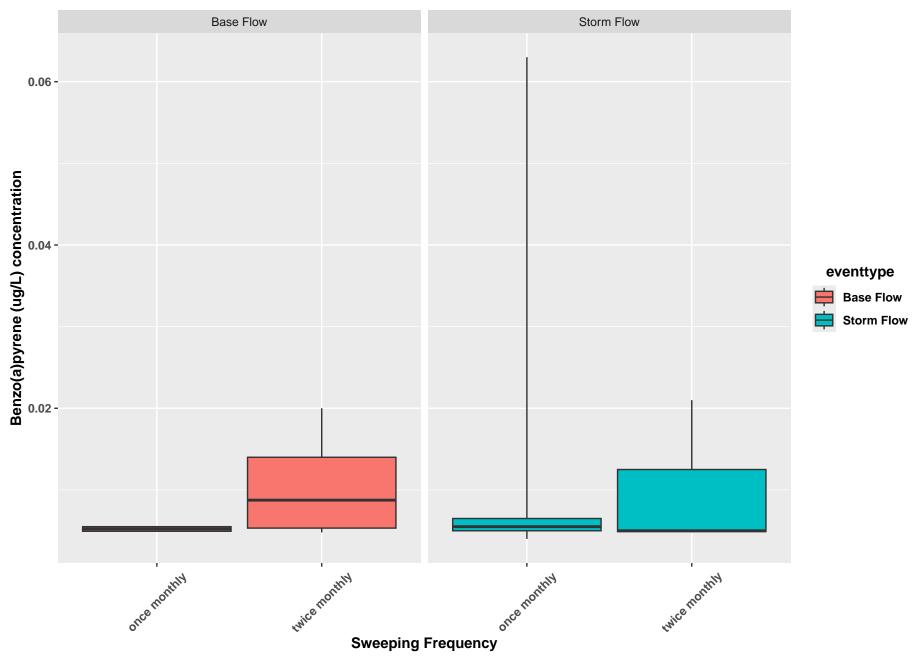


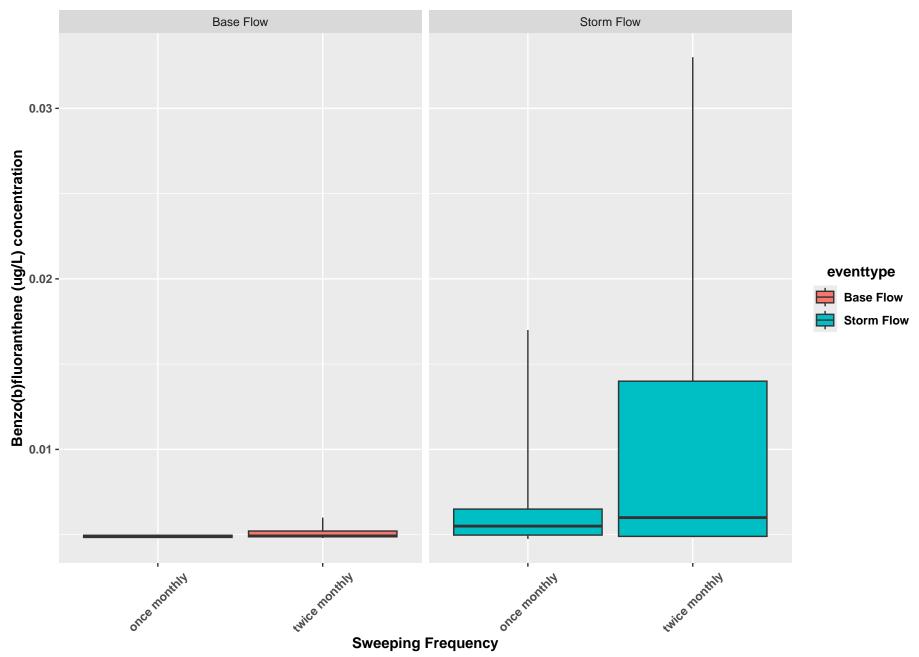


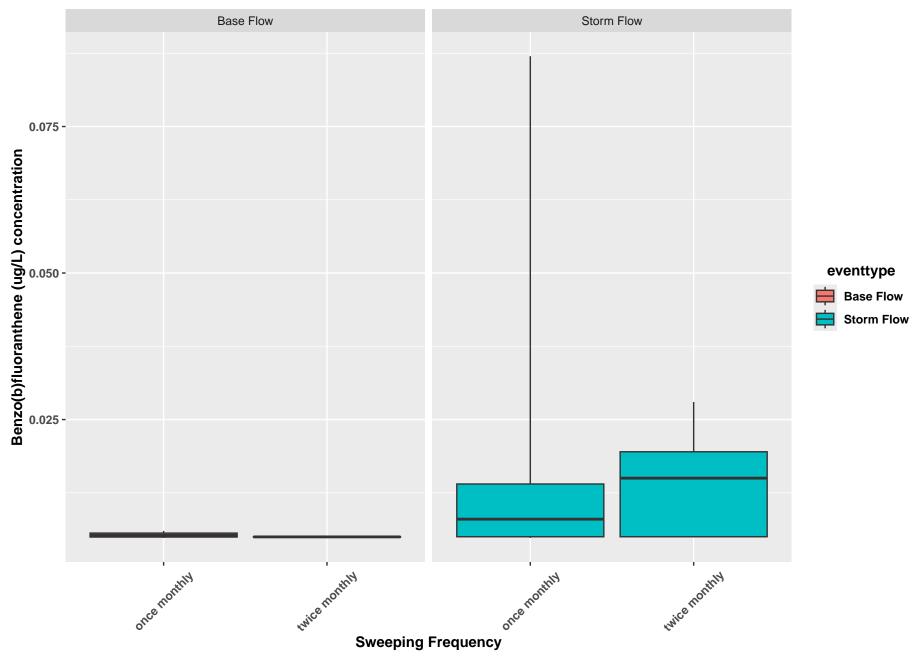


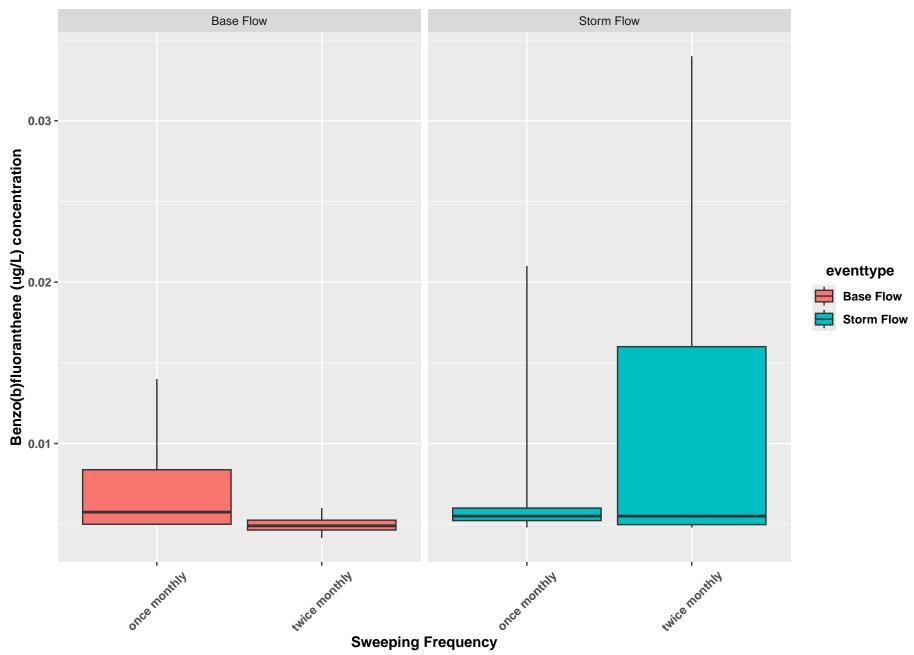


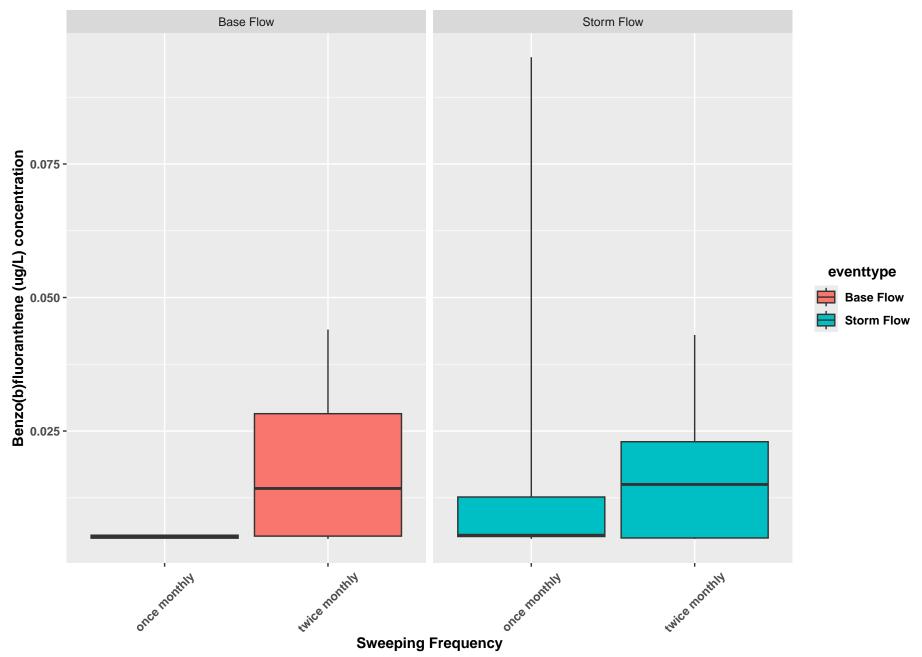


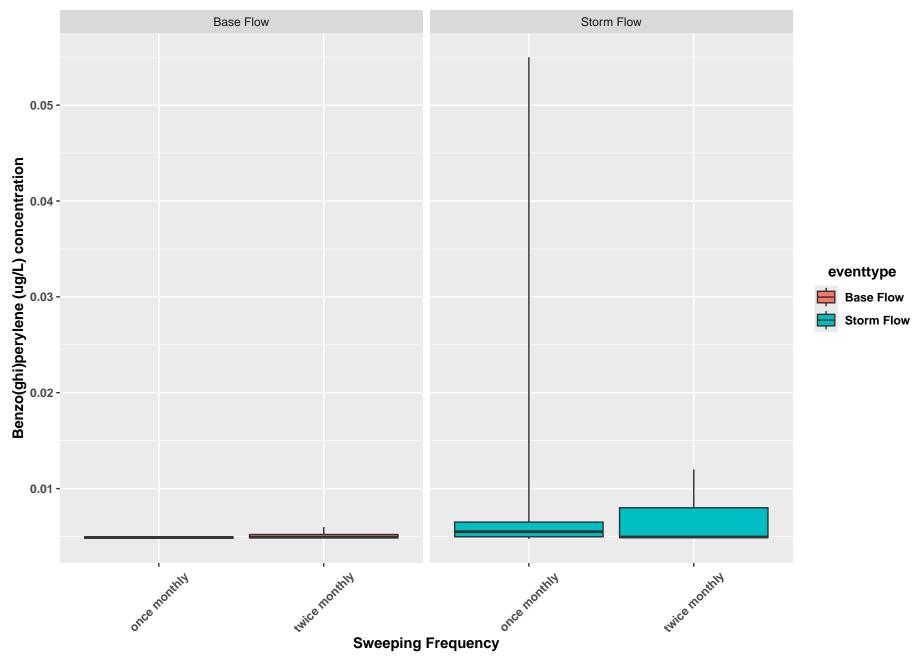


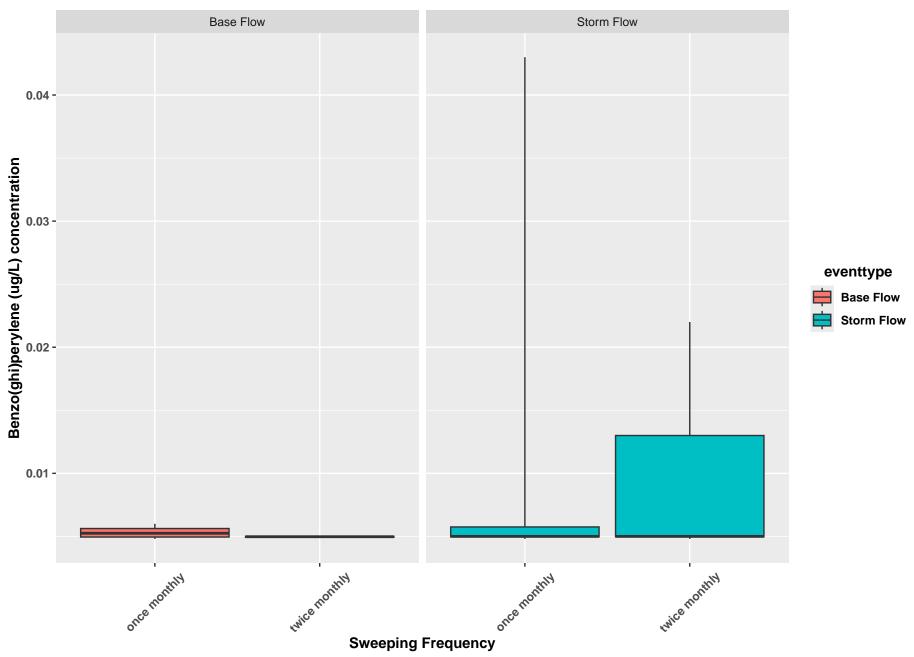


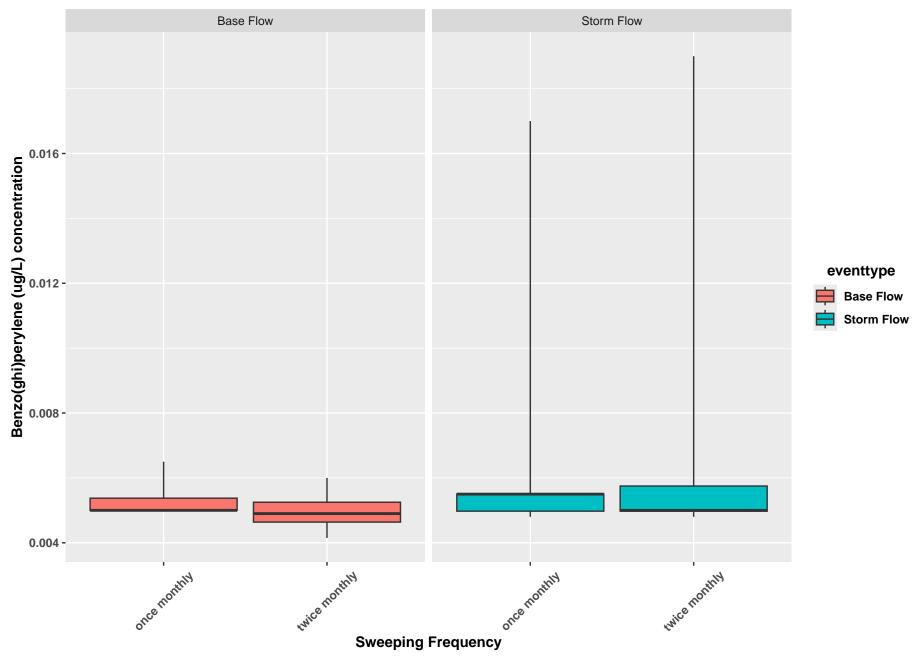


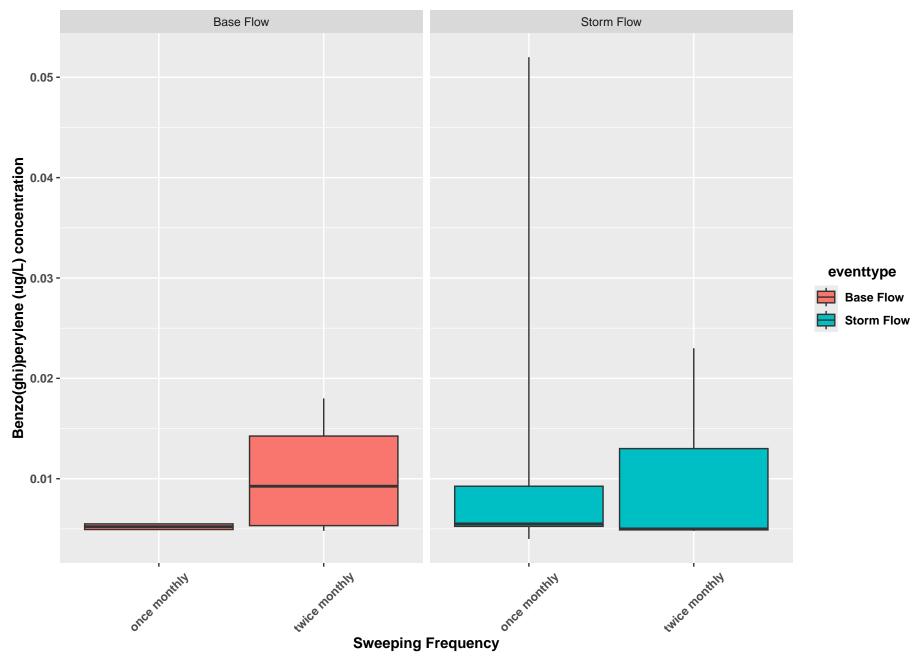


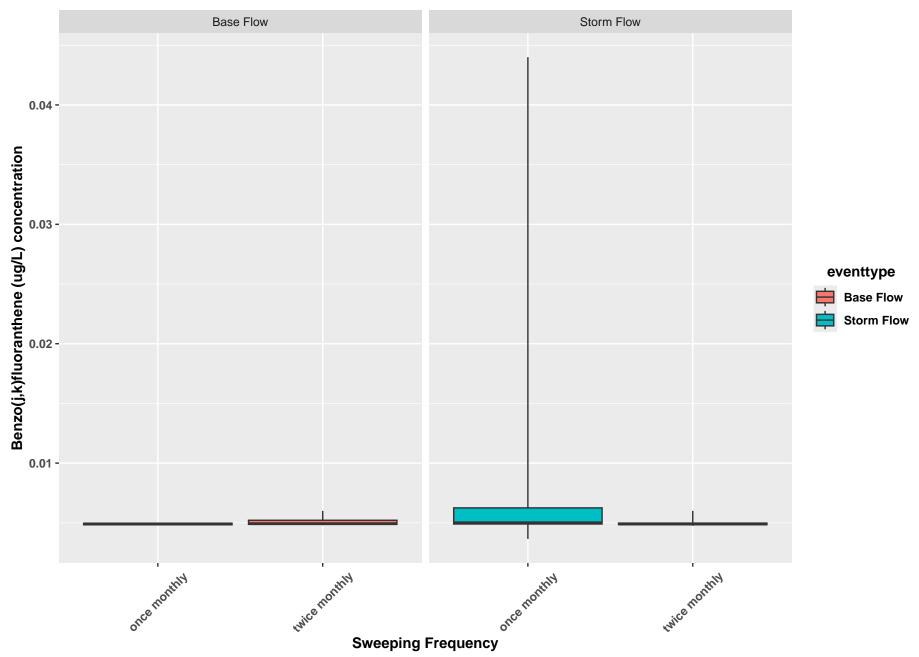


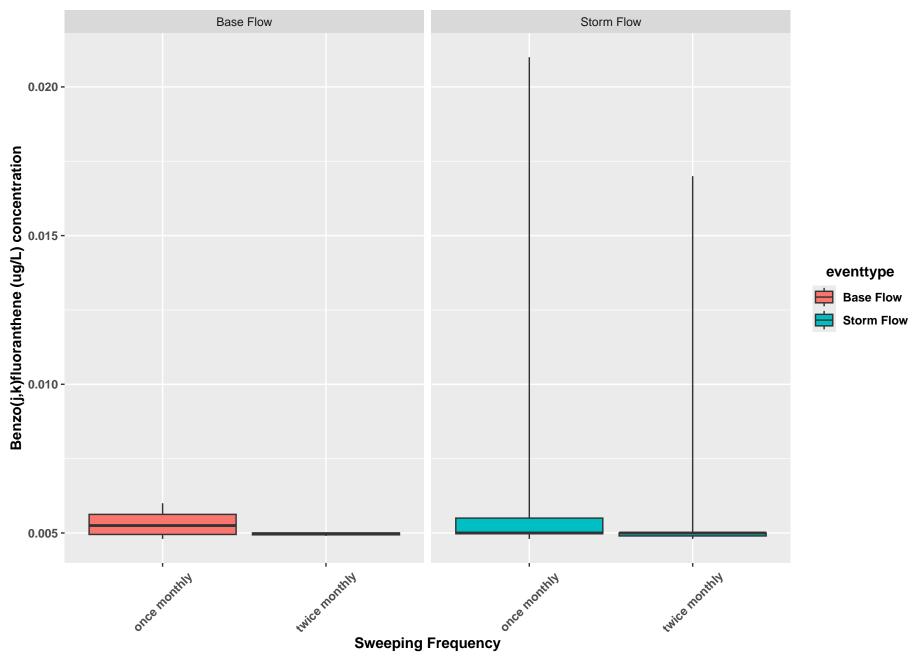


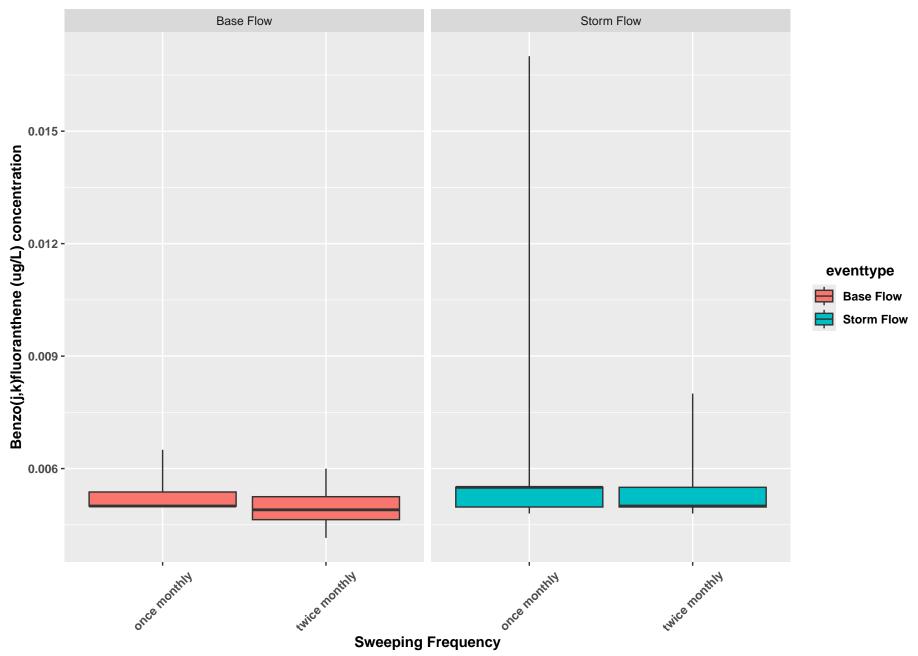


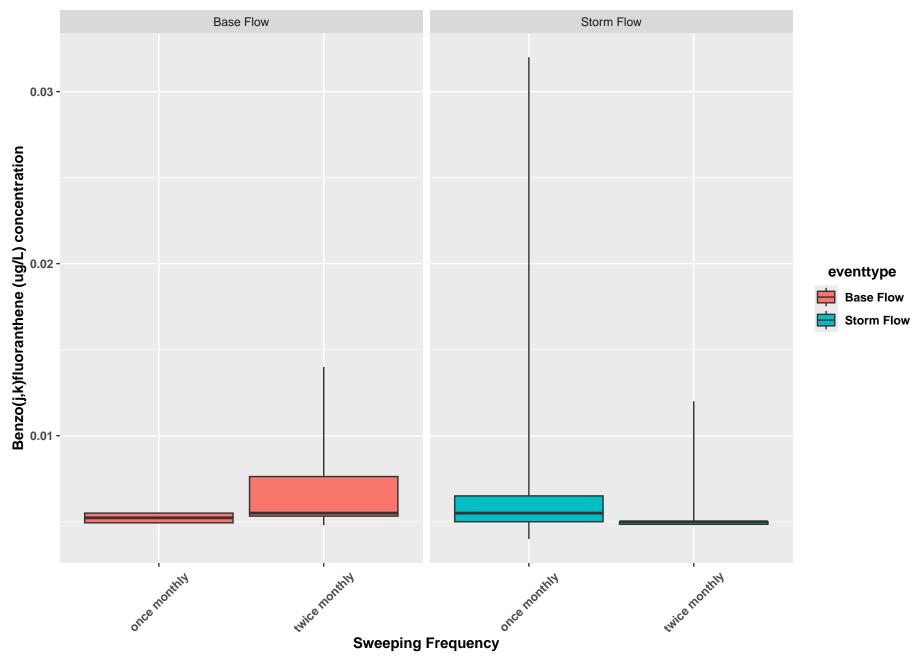


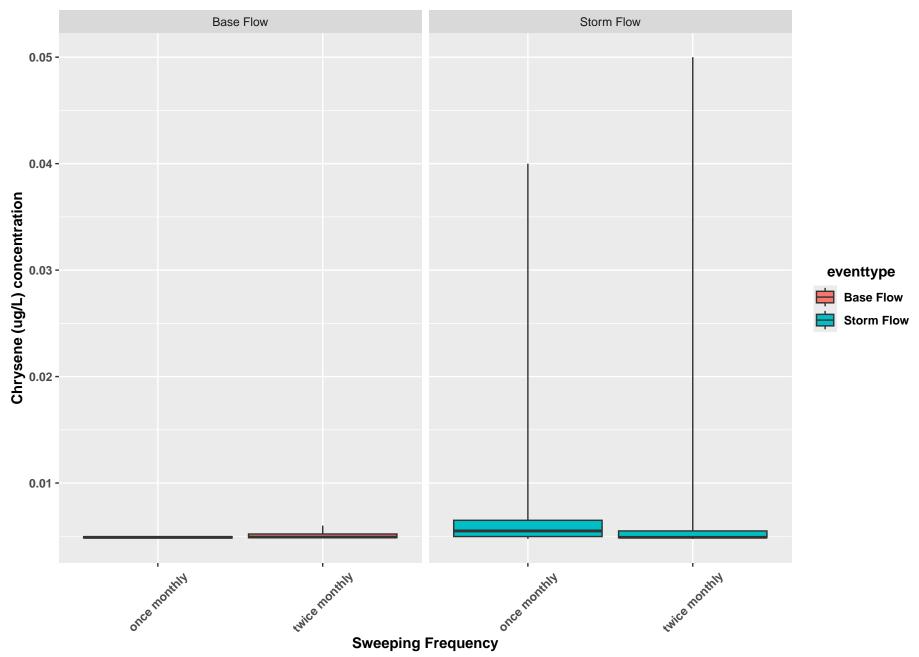


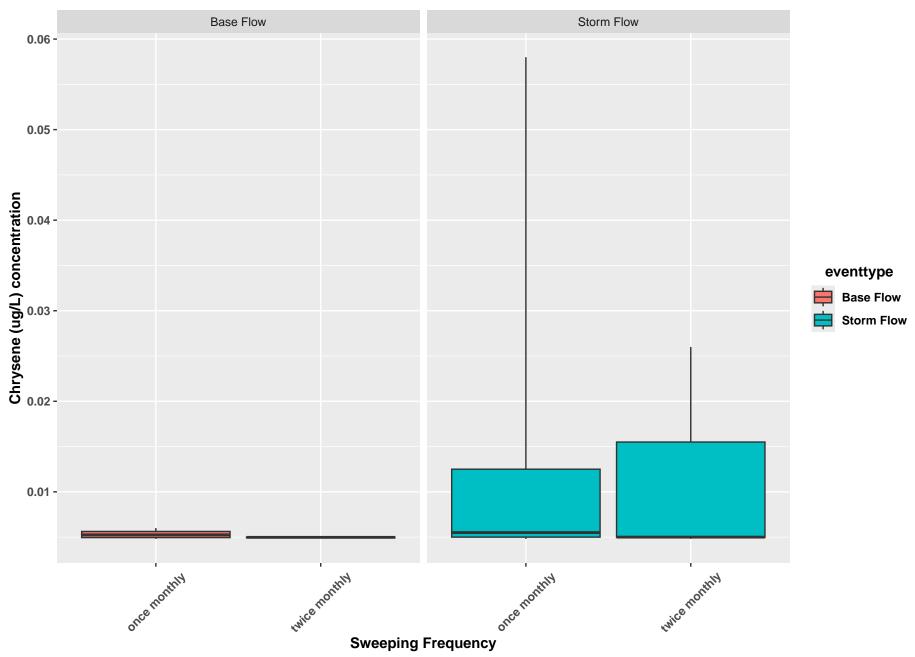


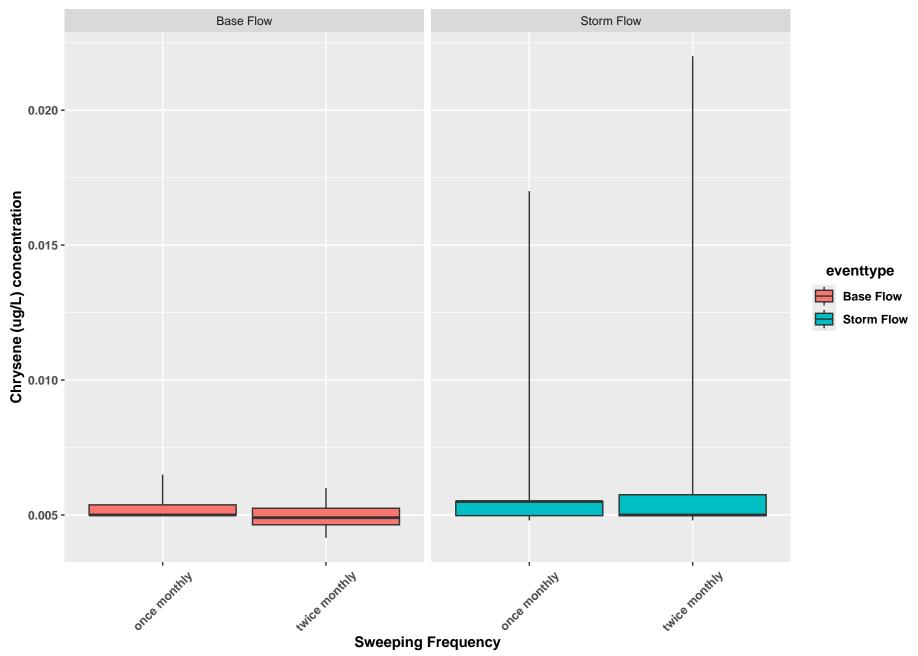


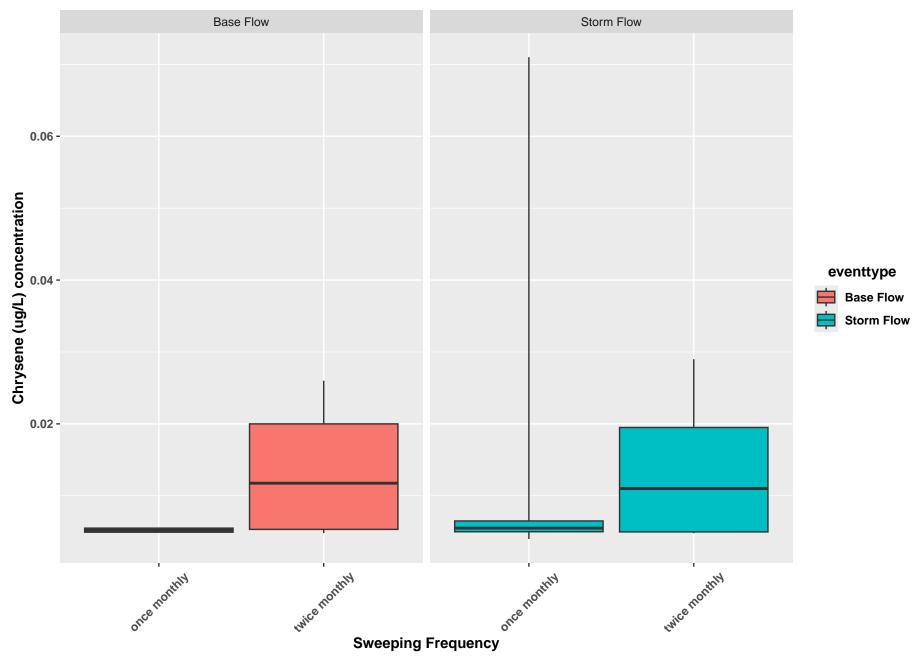


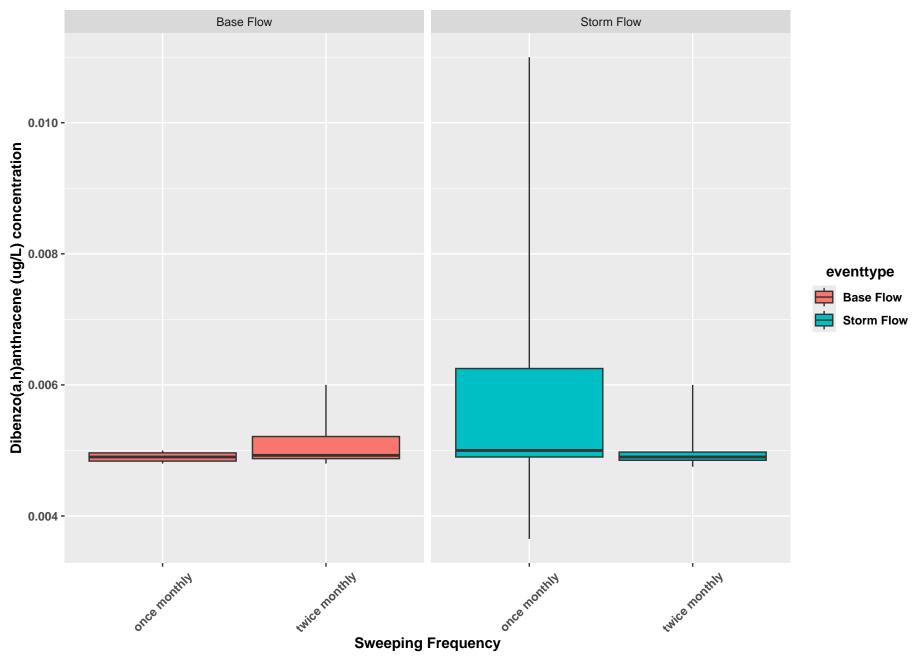


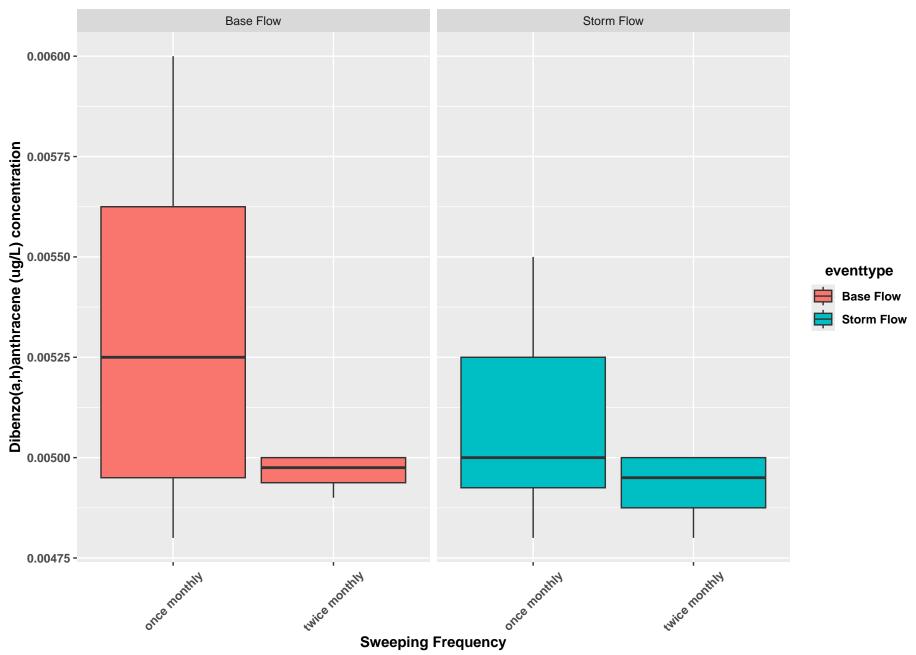


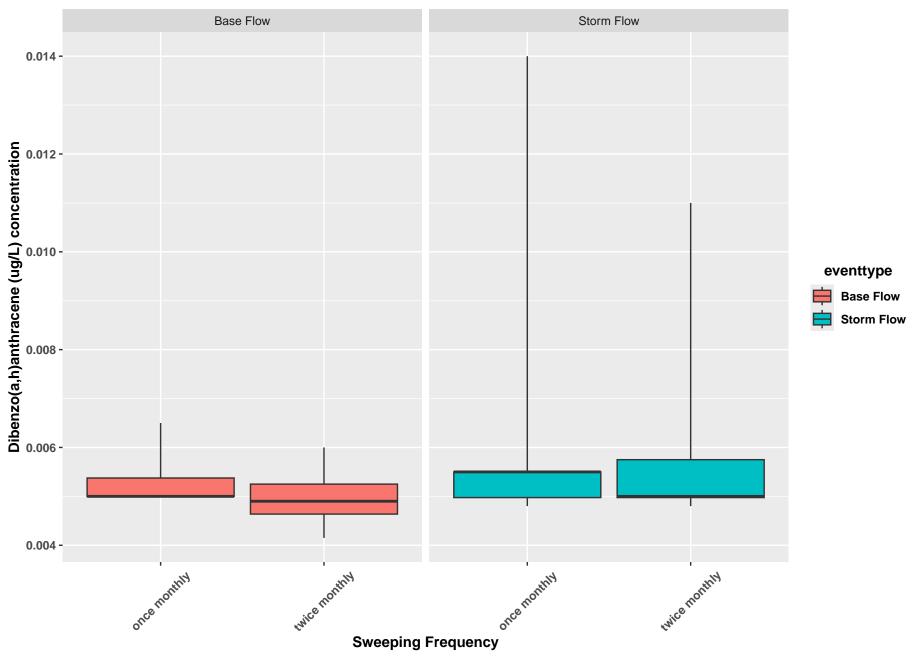


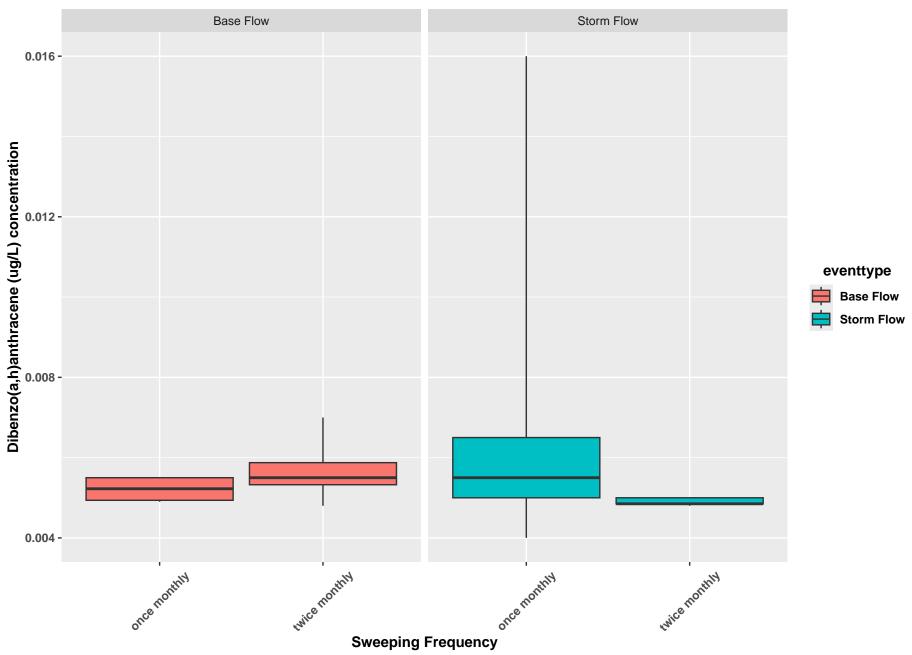


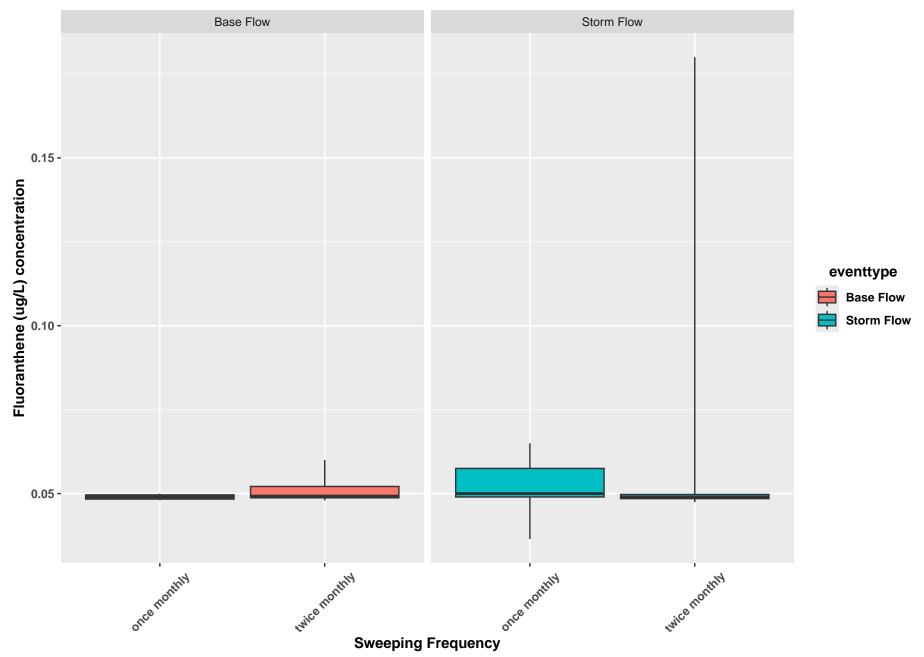


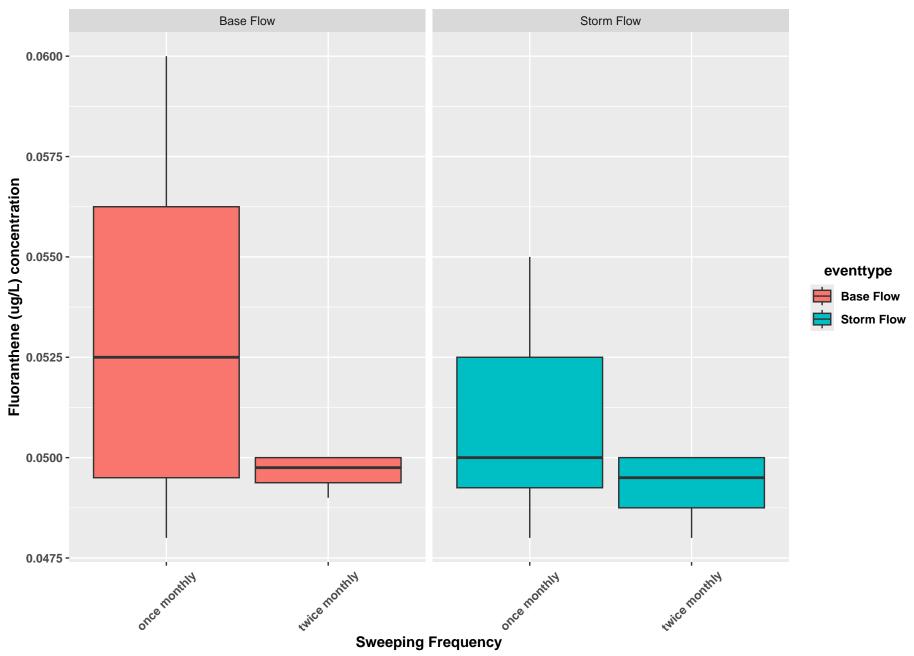


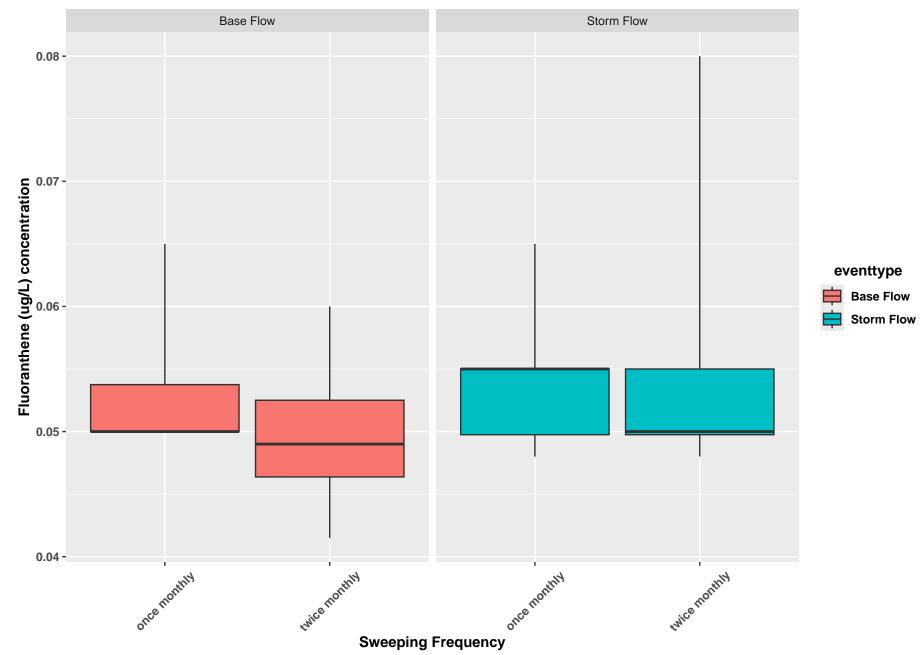


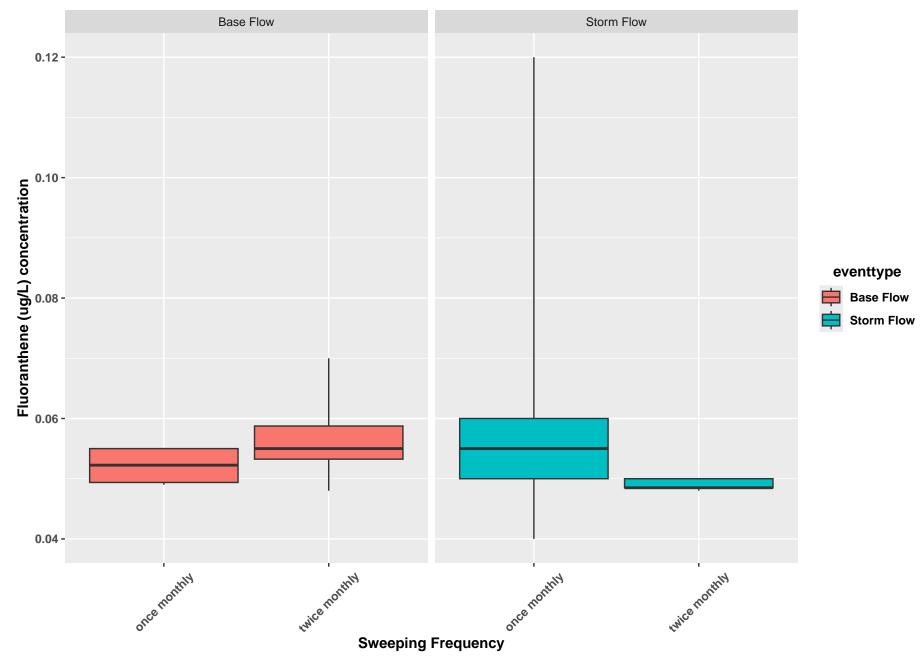


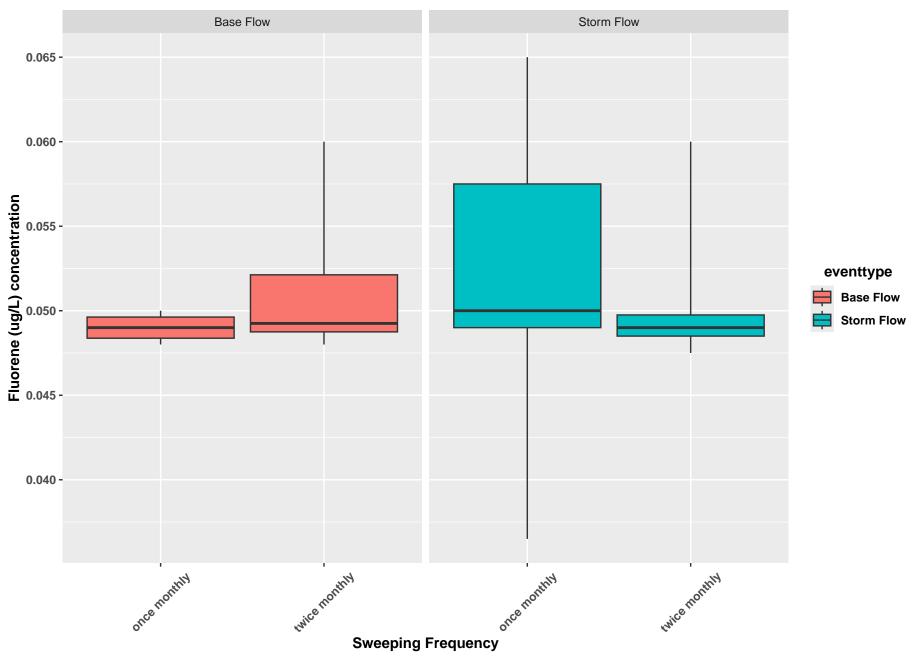


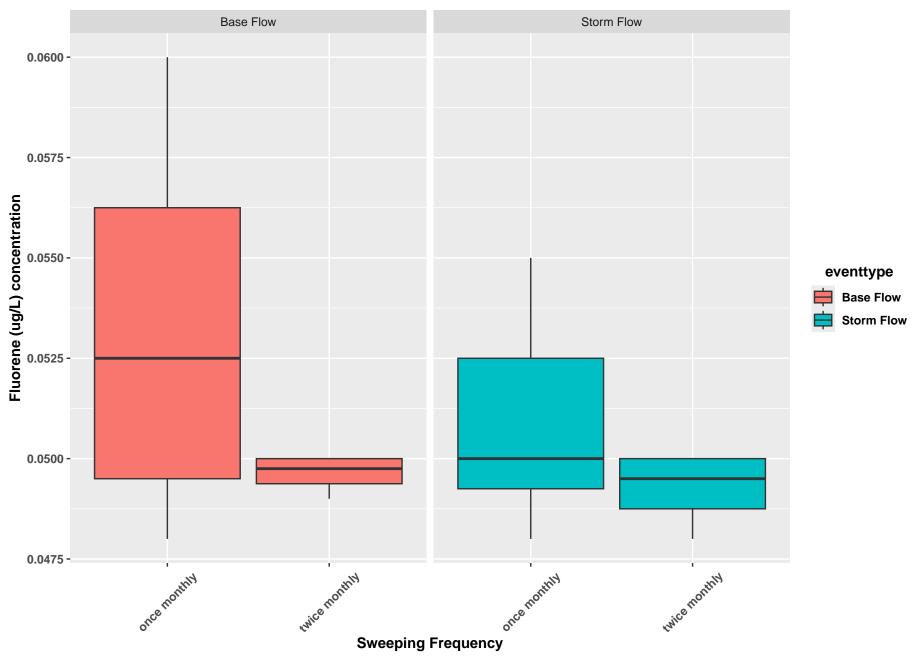


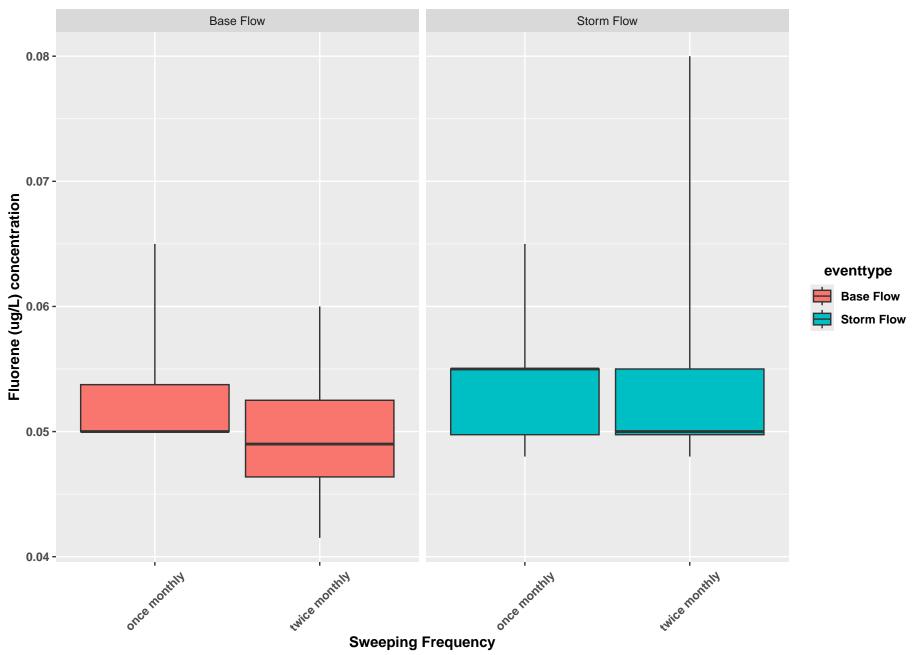


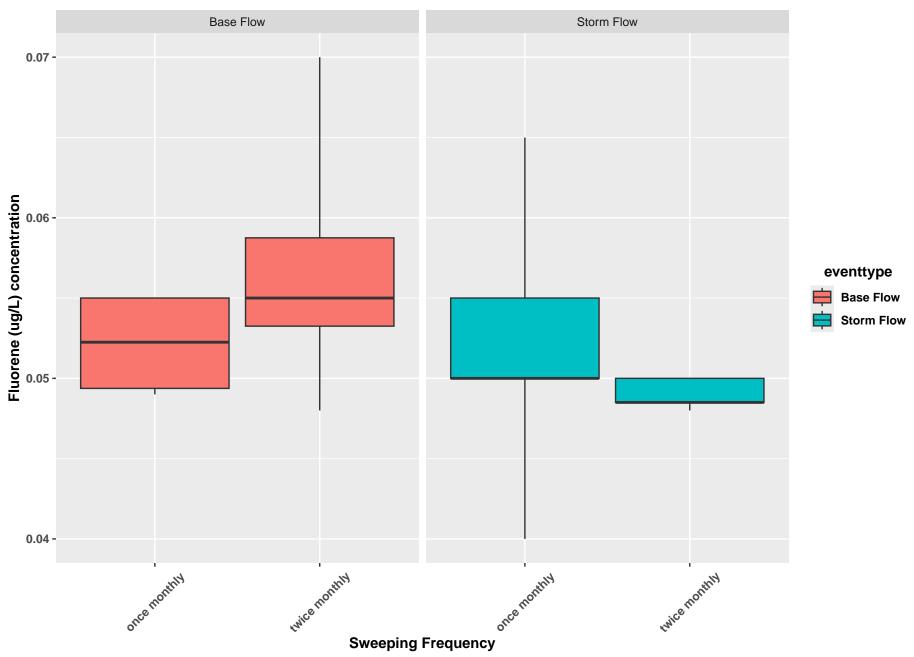


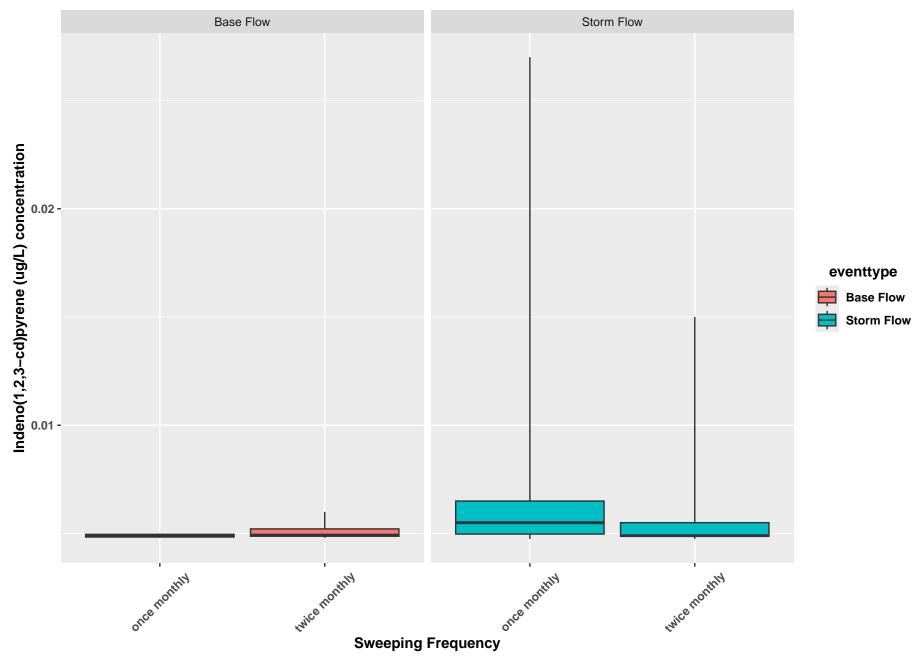


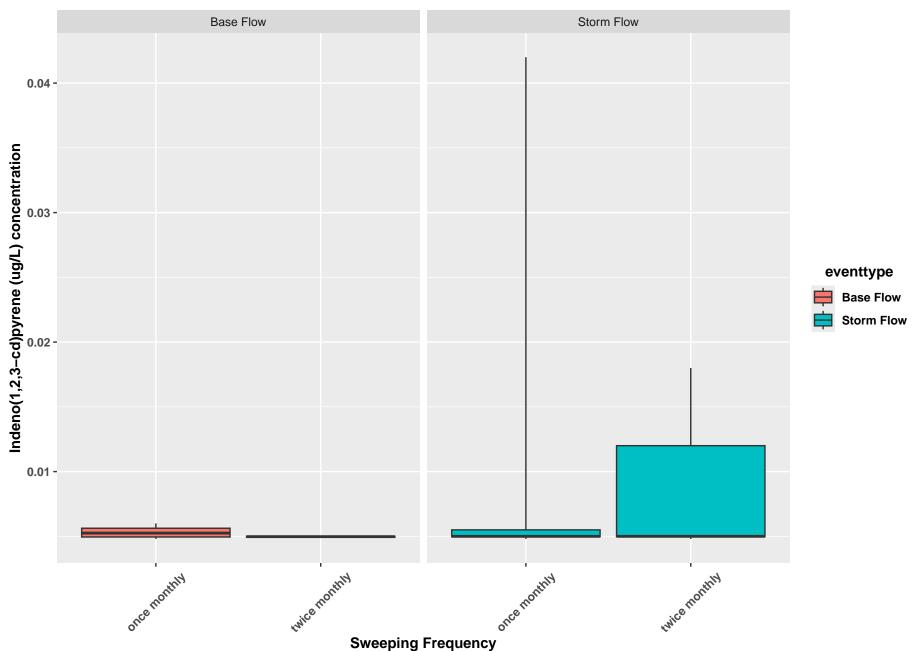


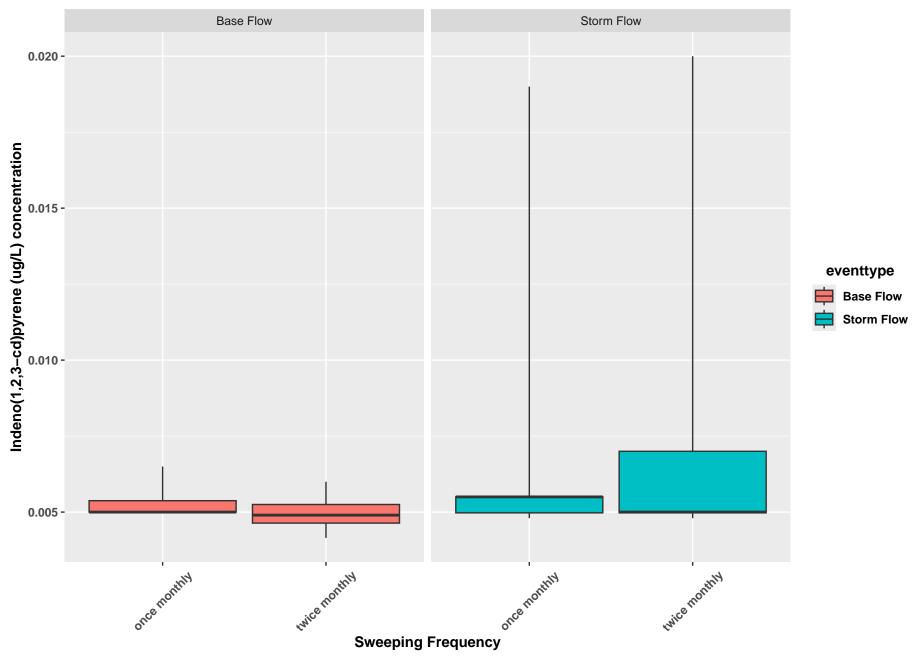


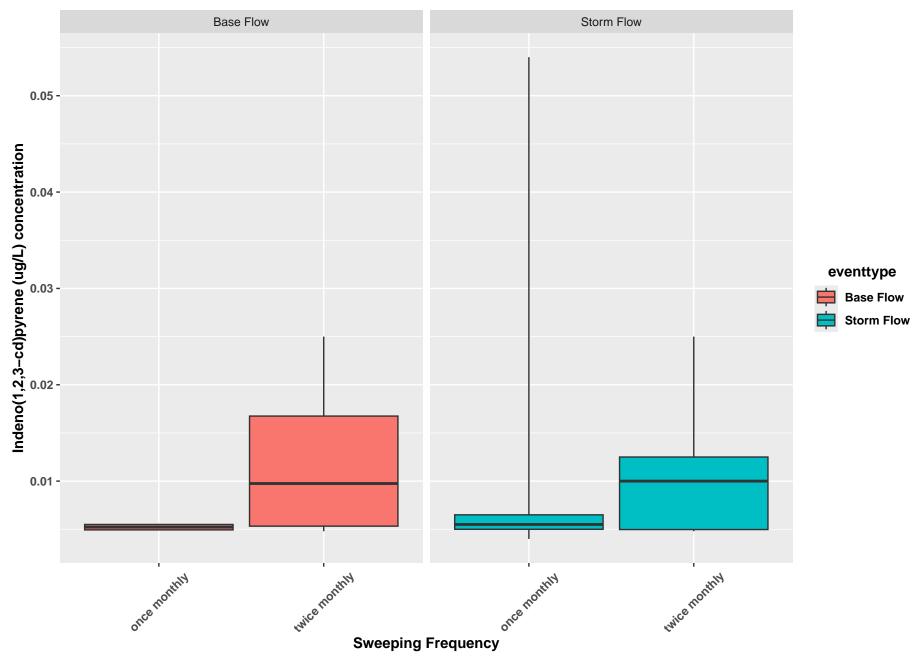


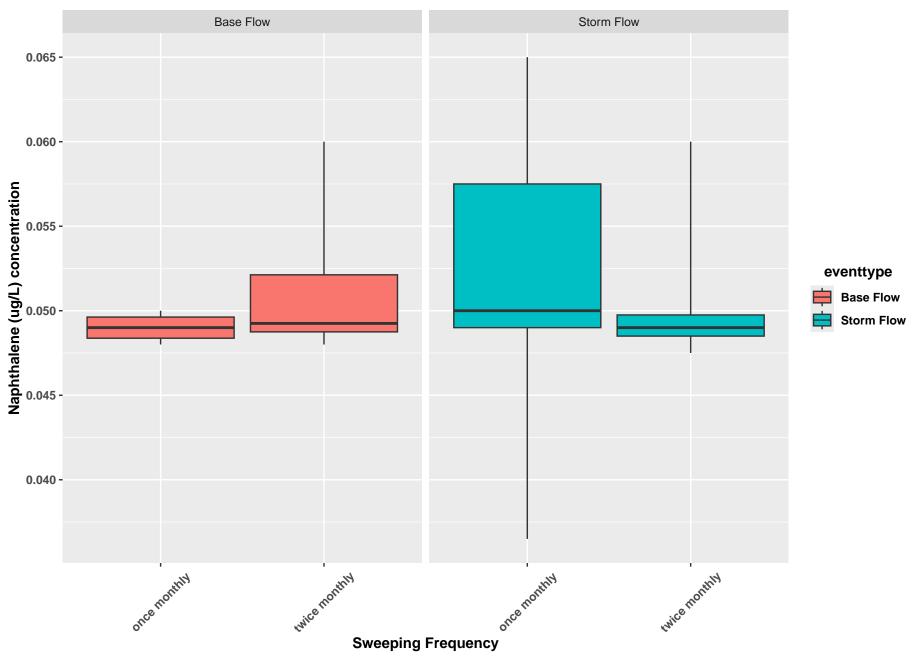


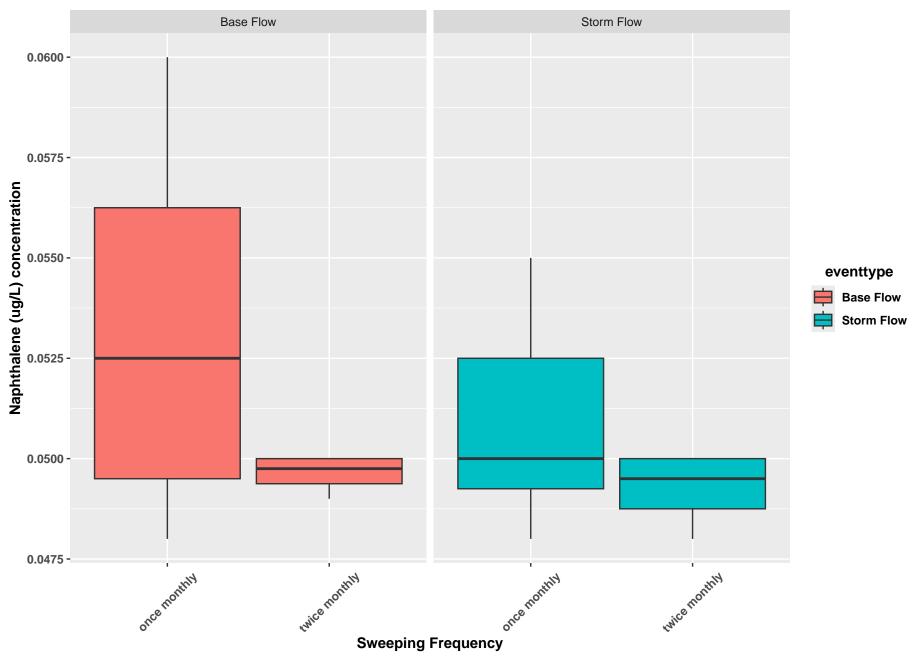


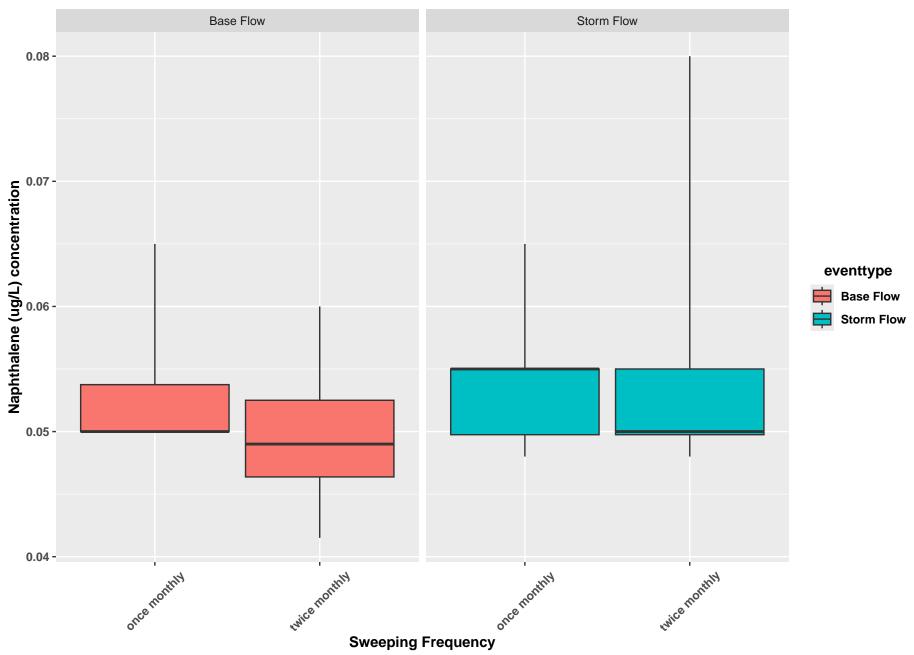


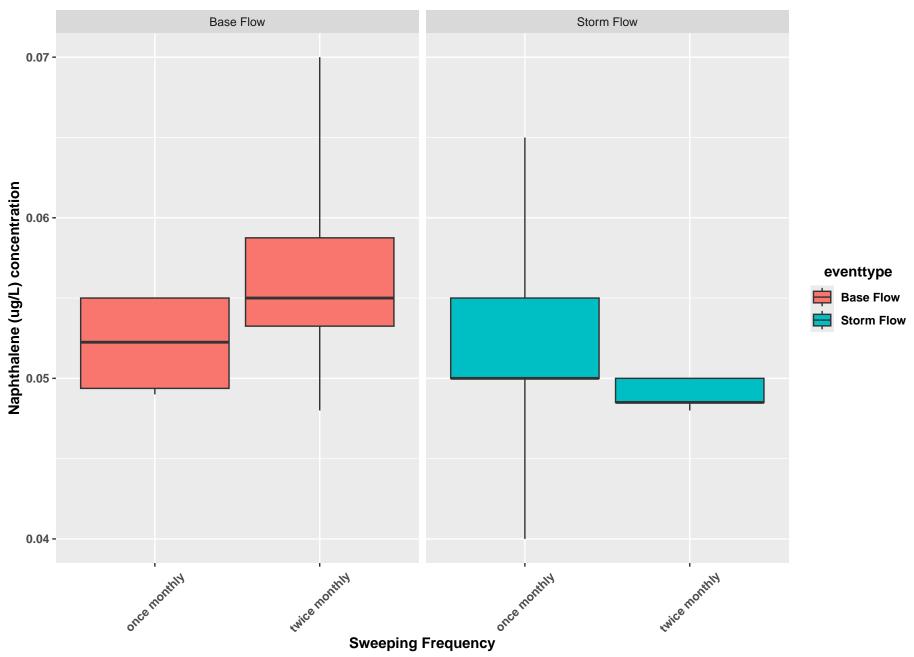


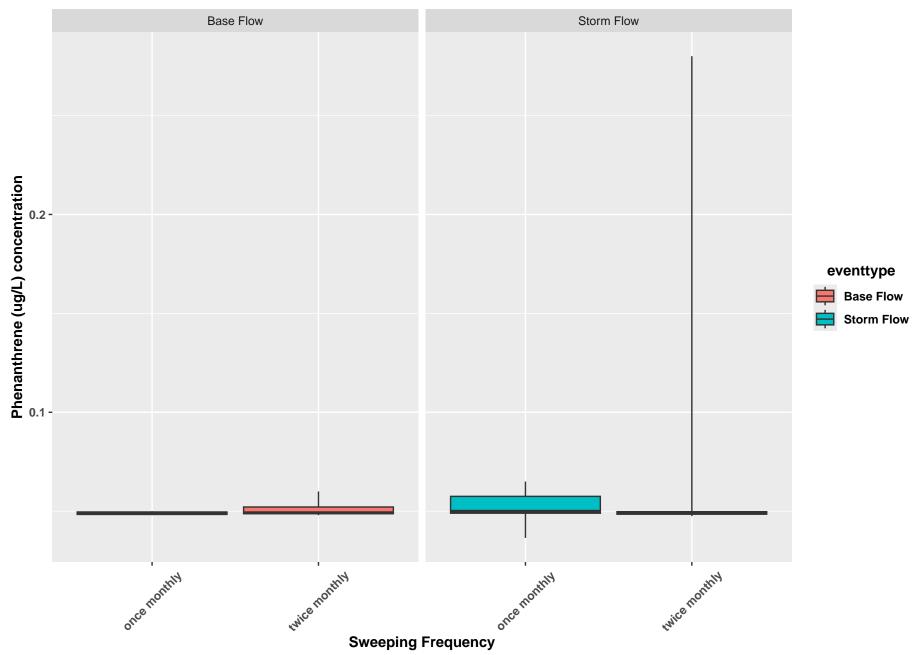


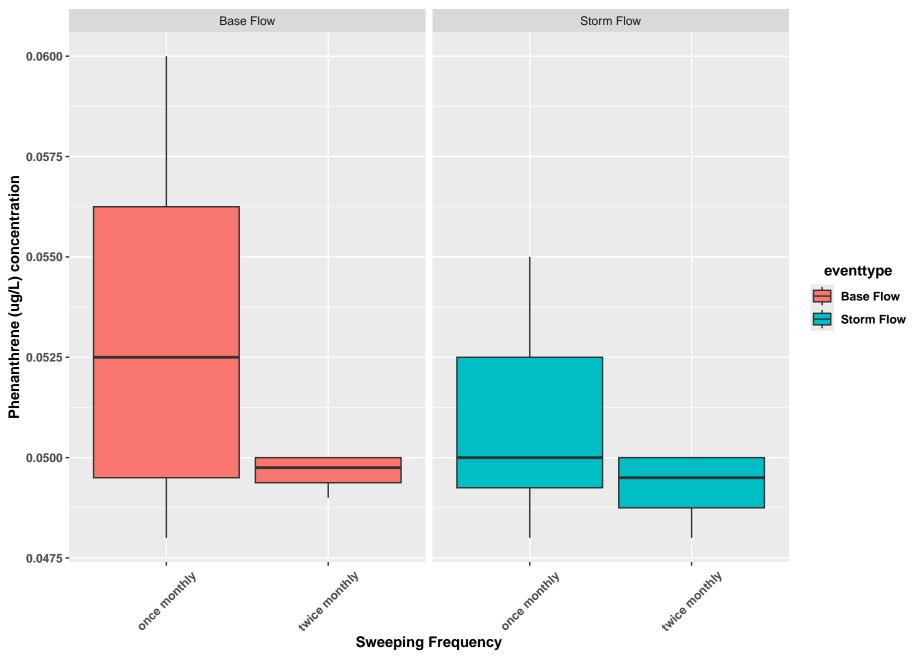


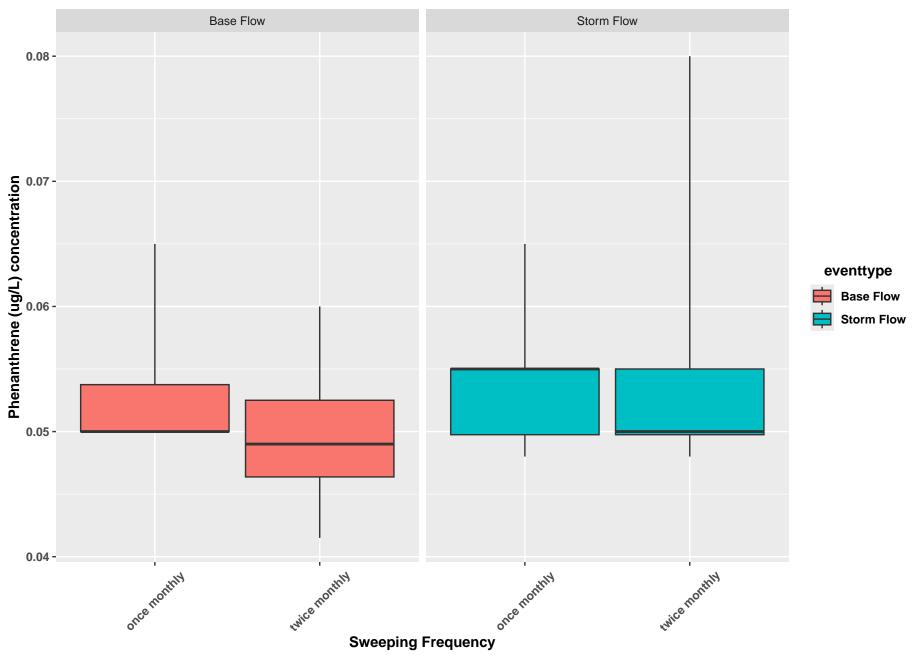


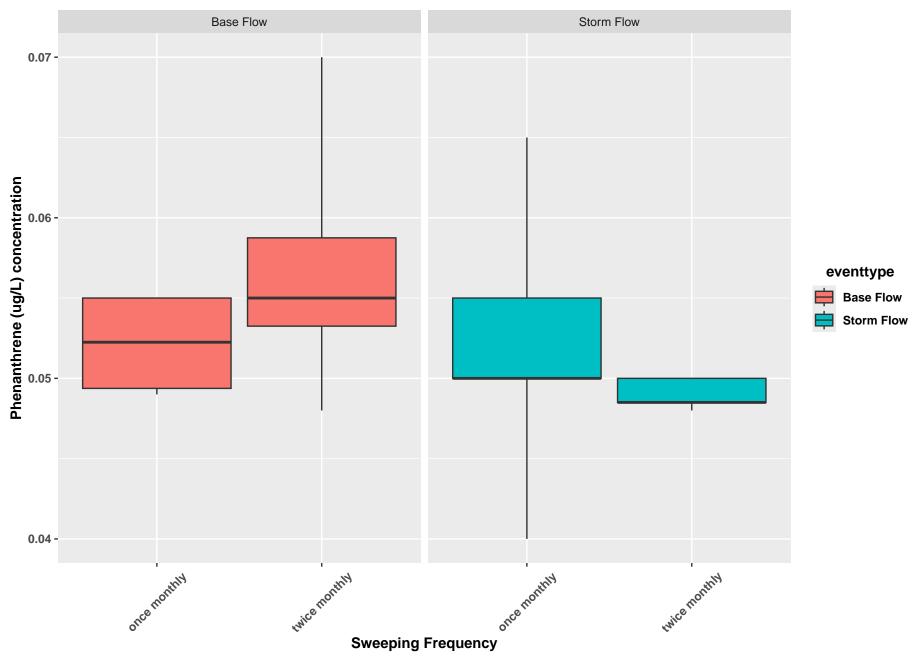




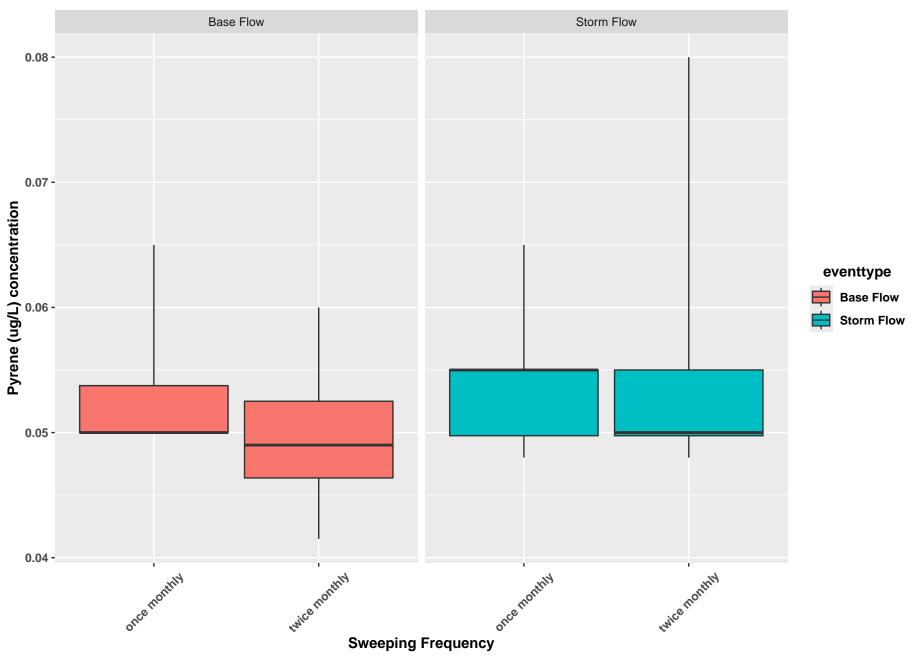


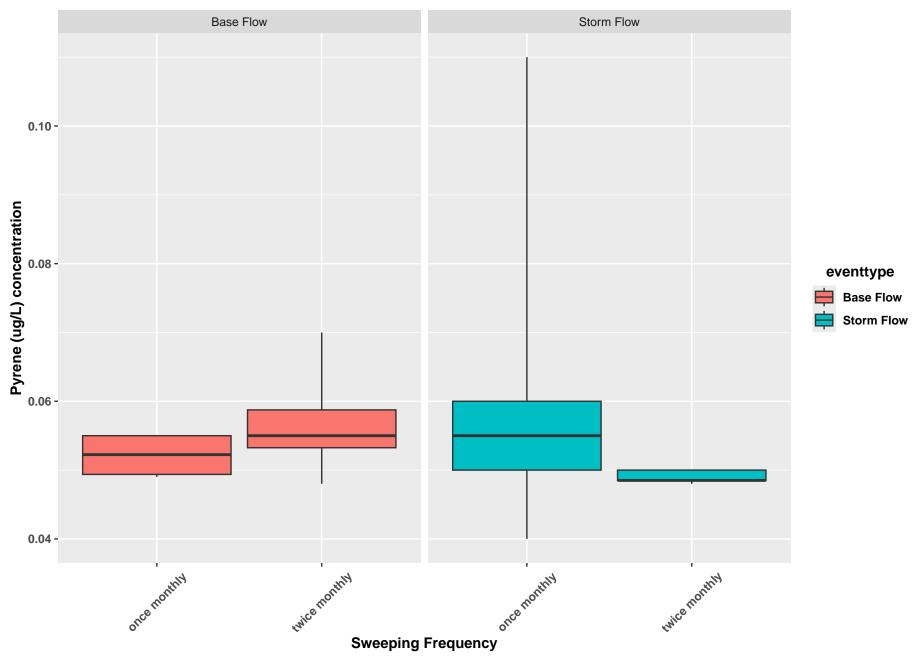


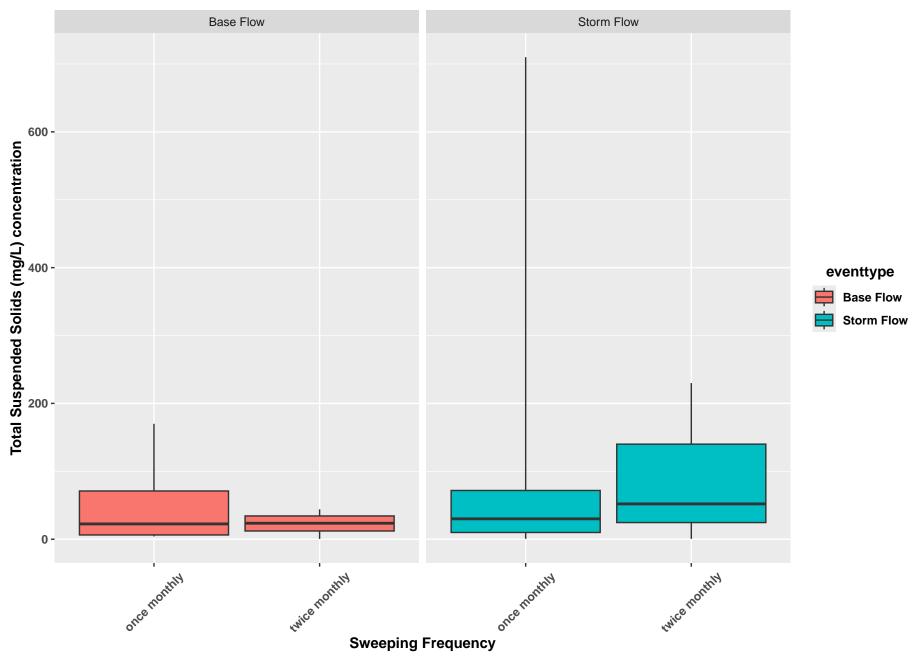


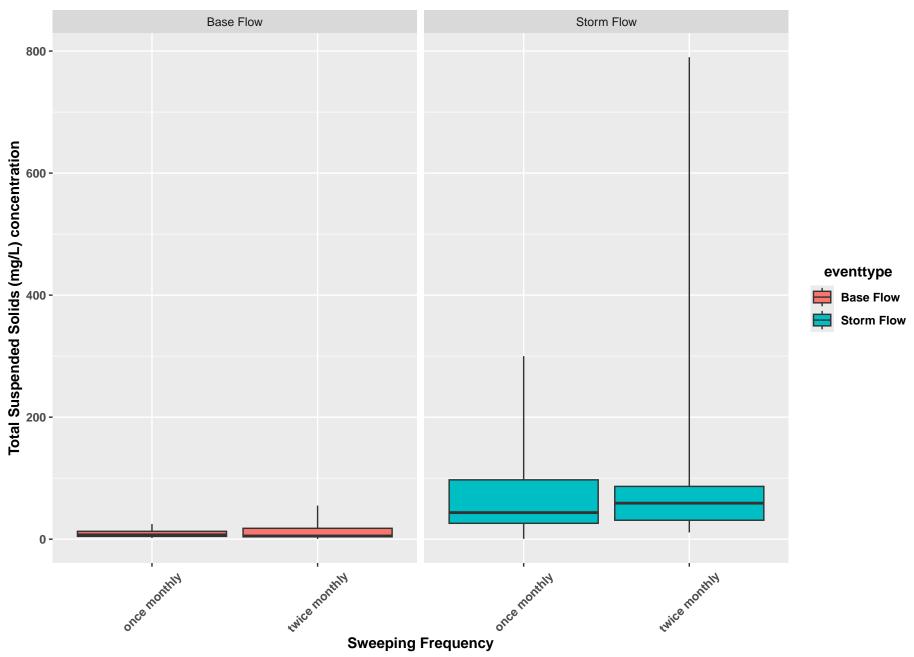


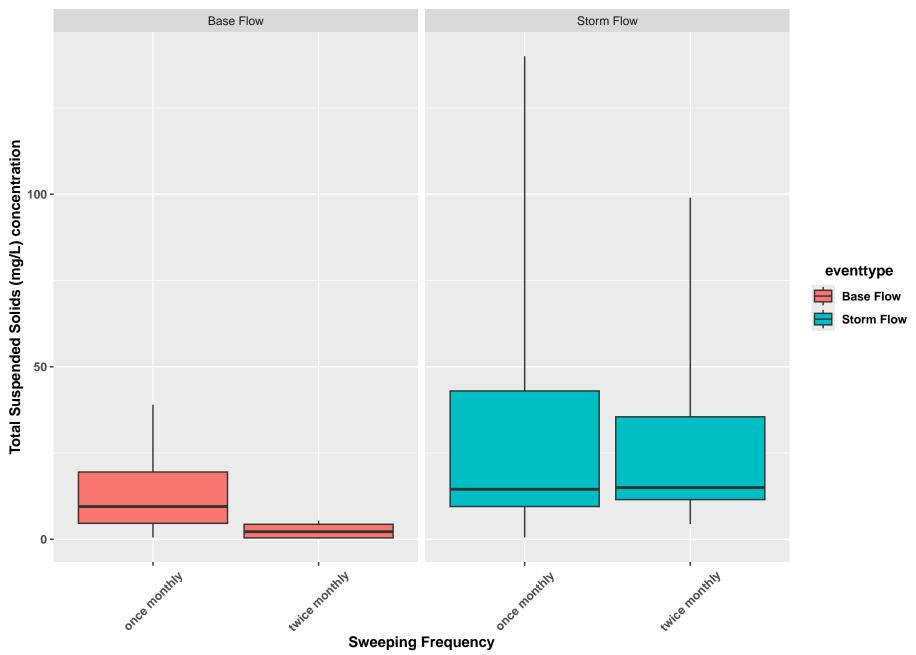


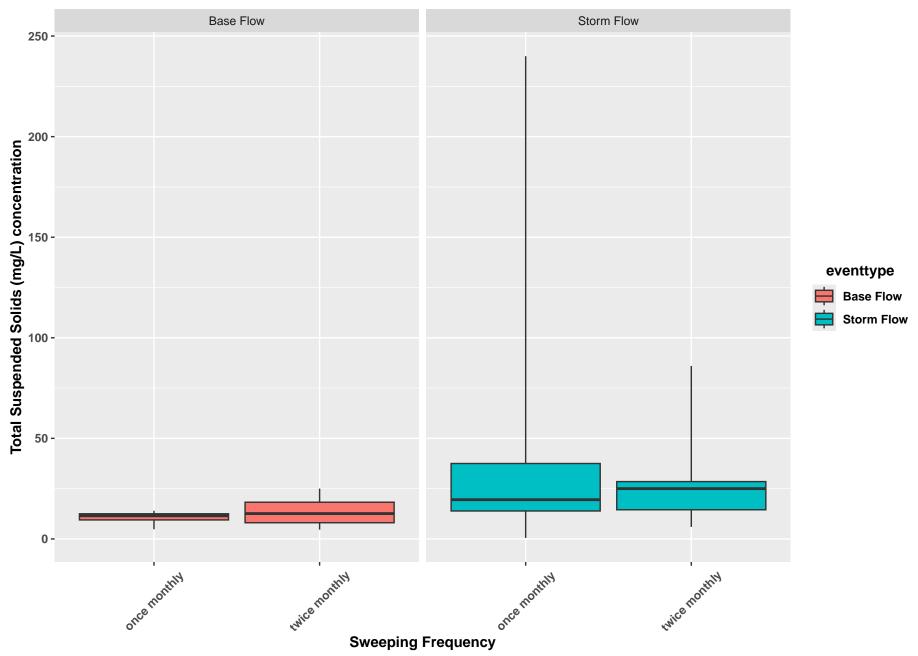


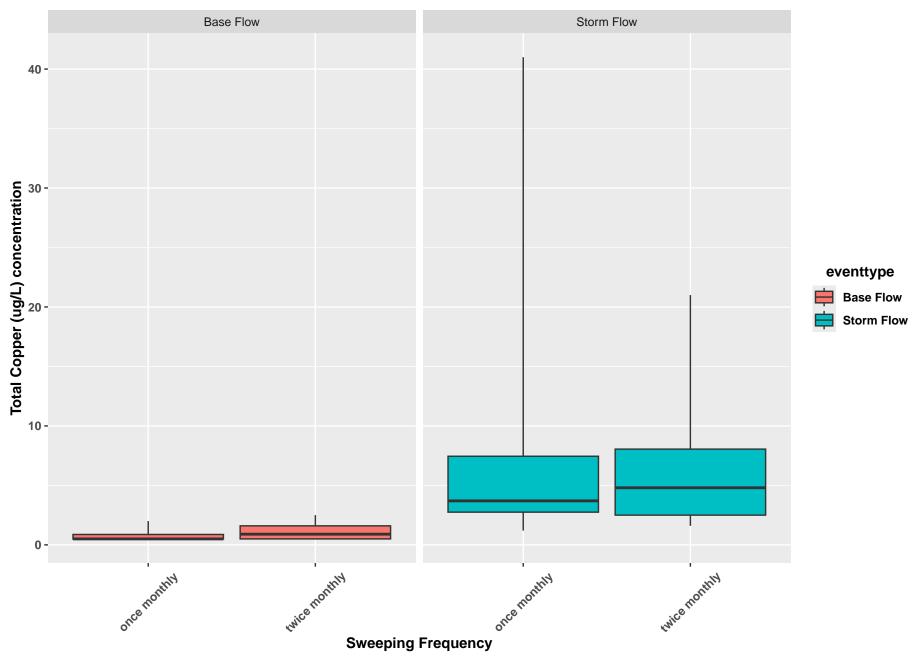


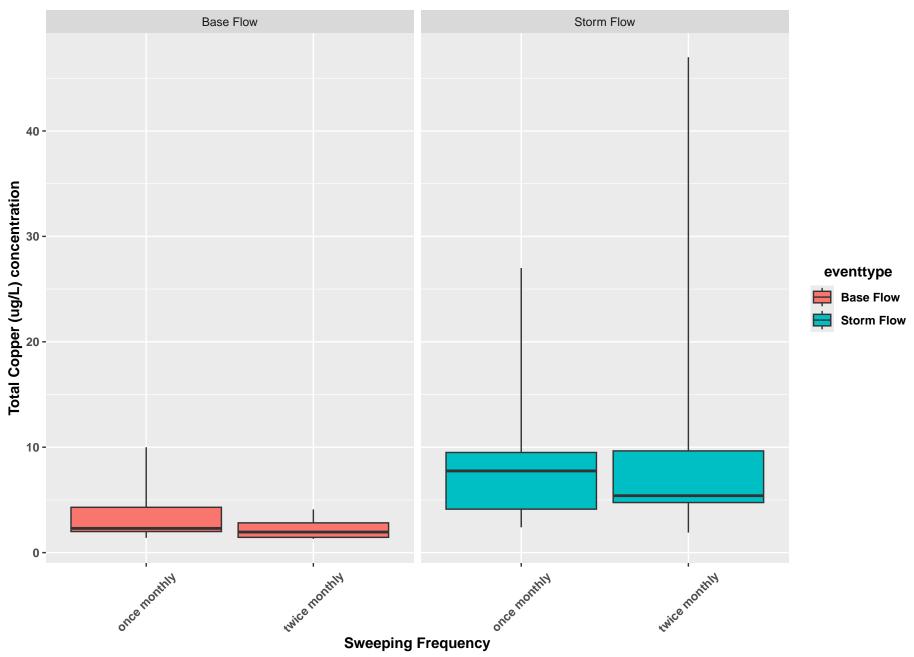


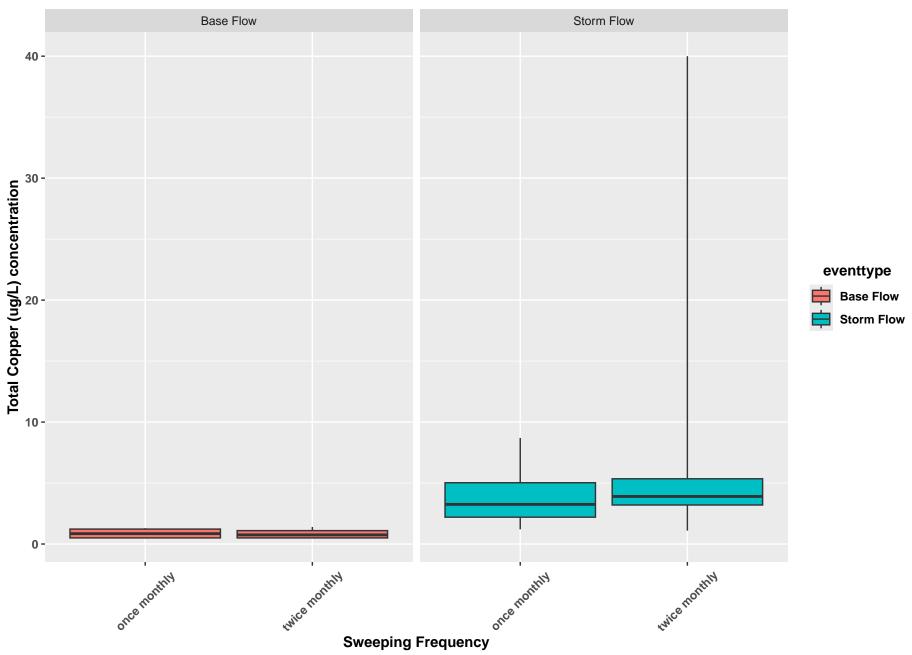


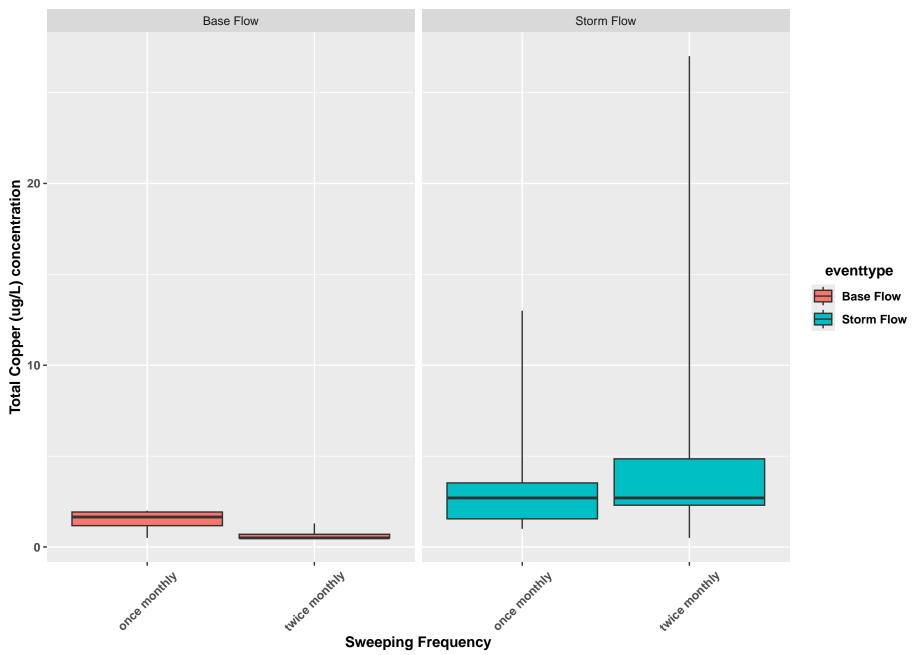












Appendix D

Tabular Summary Statistics for Total Suspended Solids, Total Copper, and Particulate Copper

Table D-1. Summary Statistics for Total Suspended Solids (mg/L) by Station, Street Sweeping Treatment, and Sampling Event Type. Ν Minimum 25th Percentile Median 75th Percentile Maximum Interquartile Range % Detected Quarterly Sweeping - Storm Events TOSMI 19 12.0 65.0 300 86.0 100 TOSMO 19 20.0 72.0 110 195 710 123 100 19 60.0 135 320 100 COUMI 4.4 32.5 102 32.0 соимо 19 7.4 64.5 100 23.5 150 41.0 Monthly Sweeping – Storm Events TOSMI 10 1.0 31.0 43.5 83.3 300 52.3 90 90 TOSMO 10 1.0 10.3 30.0 45.5 610 35.3 COUMI 10 1.0 16.3 19.5 24.3 240 8.0 90 соимо 10 1.0 11.0 14.5 36.3 140 25.3 90 Twice Monthly Sweeping – Storm Events TOSMI 15 11.0 31.0 59.0 86.5 790 55.5 100 TOSMO 15 1.0 24.5 52.0 140 230 116 100 COUMI 15 6.0 14.5 25.0 28.5 86.0 14.0 100 соимо 15 35.5 99.0 4.4 11.5 15.0 24.0 100 All Storm Events 31.5 TOSMI 44 1.0 97.3 790 65.8 98 58.5 TOSMO 44 1.0 26.5 69.5 143 710 116 98 44 98 COUMI 1.0 16.8 26.5 76.8 320 60.0 44 98 COUMO 1.0 11.8 22.0 47.0 150 35.3 Quarterly Sweeping - Base Flow TOSMI 9 2.4 5.0 11.0 13.0 26.0 8.0 100 9 2.2 4.2 7.2 TOSMO 3.8 11.0 16.0 100 соимі 9 4.4 6.4 14.0 18.0 51.0 11.6 100 5.8 СОИМО 9 1.8 2.8 7.2 39.0 4.4 100 Monthly Sweeping - Base Flow TOSMI 5.4 8.0 11.4 25.0 8.8 100 16.8 TOSMO 4 100 7.0 9.0 23.8 71.0 170 62.1 5.9 COUMI 4 4.8 8.6 11.3 12.0 5.4 100 COUMO 4 1.0 4.0 5.5 7.8 13.0 3.8 75 Twice Monthly Sweeping – Base Flow TOSMI 4 8.0 4.0 5.2 17.8 55.0 13.9 75 4 75 TOSMO 0.8 12.2 23.5 34.3 44.0 22.1 4 12.6 18.3 COUMI 4.6 8.1 25.0 10.2 100 соимо 0.8 0.8 2.4 4.4 5.4 3.6 50 All Base Flow TOSMI 17 8.0 5.0 8.8 13.0 55.0 8.0 94 TOSMO 17 0.8 4.0 9.6 16.0 170 12.0 94 COUMI 17 4.4 6.2 11.0 16.0 51.0 9.8 100 COUMO 17 8.0 2.4 5.0 6.2 39.0 3.8 82

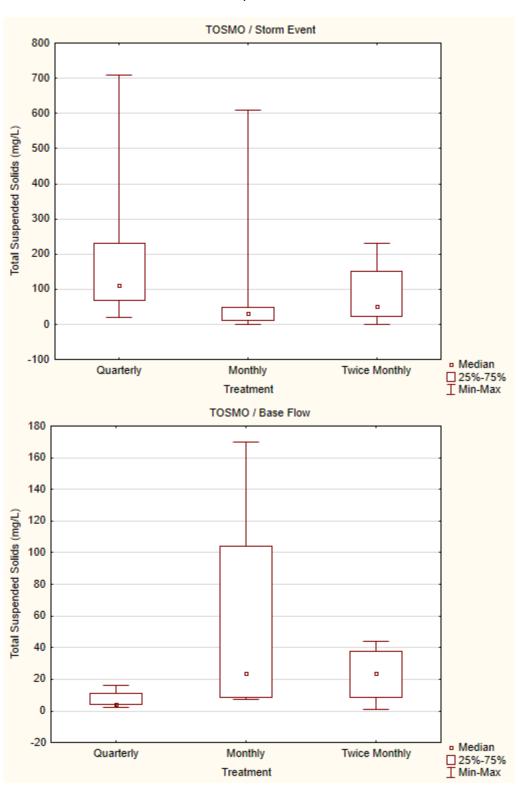
mg/L: milligrams per Liter

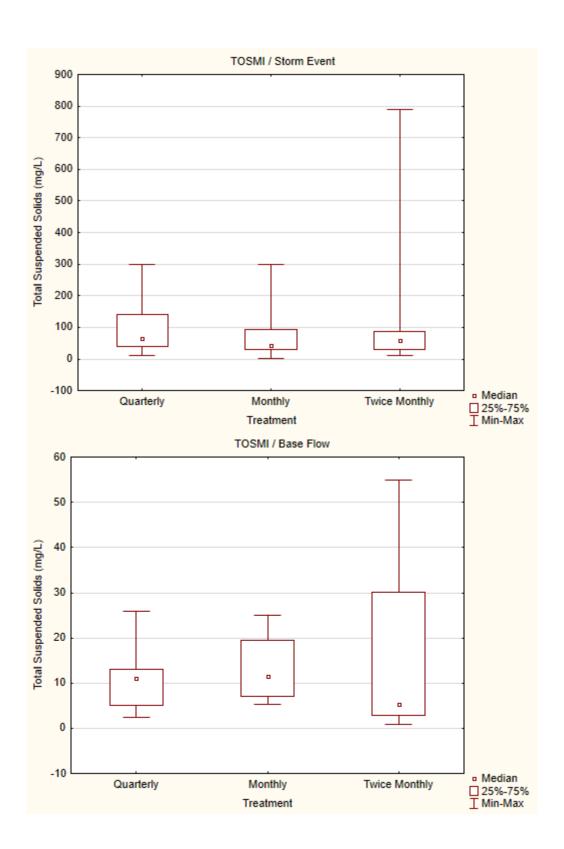
Tabl	Table D-2. Summary Statistics for Total Copper (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type.										
	N	Minimum	25th Percentile	Median	75th Percentile	Maximum	Interquartile Range	% Detected			
•			Qi	arterly Swe	eping – Storm Even	ts					
TOSMI	19	3.2	5.6	7.5	10.6	27	5.0	100			
TOSMO	19	4.0	5.2	7.5	9.7	41	4.6	100			
COUMI	19	1.8	3.2	5.4	7.9	15	4.7	100			
COUMO	19	2.0	4.2	5.1	6.2	11	2.1	100			
Monthly Sweeping – Storm Events											
TOSMI	10	2.4	4.2	7.8	9.4	18	5.3	100			
TOSMO	10	1.7	3.1	3.7	5.4	27	2.3	100			
COUMI	10	1.3	1.9	2.7	3.2	13	1.3	100			
COUMO	10	1.2	2.2	3.3	4.6	8.7	2.4	100			
			Twice	Monthly Sv	veeping – Storm Ev	vents					
TOSMI	15	1.9	4.75	5.4	9.65	47	4.9	100			
TOSMO	15	1.6	2.5	4.8	8.05	21	5.55	100			
COUMI	15	1.0	2.3	2.7	4.85	27	2.55	87			
COUMO	15	1.1	3.2	3.9	5.35	40	2.15	100			
					torm Events						
TOSMI	44	1.9	5.0	6.9	9.5	47	4.5	100			
TOSMO	44	1.6	3.8	5.8	9.0	41	5.3	100			
COUMI	44	1.0	2.5	3.3	5.7	27	3.2	95.5			
COUMO	44	1.1	3.3	4.3	6.1	40	2.8	100			
				•	eeping – Base Flow			T			
TOSMI	9	1.0	1.2	1.7	3.3	11	2.1	88.9			
TOSMO	9	1.0	1.0	1.0	1.3	11	0.3	44.4			
COUMI	9	1.0	1.0	1.0	6.0	11	5.0				
COUMO	9	1.0	1.0	1.0	1.1	11	0.1	44.4			
					eeping – Base Flow			1			
TOSMI	4	2.2	2.4	3.3	5.7	10	3.3	100			
TOSMO	4	1.0	1.0	1.1	1.4	2.0	0.4	50			
COUMI	4	1.0	1.3	1.7	1.9	2.0	0.6				
COUMO	4	1.0	1.2	1.2	1.2	1.3	0.1	75			
TOCNAL	4	1.2		ce Monthly S			1.4	100			
TOSMI	4	1.3	1.5	2.0			1.4				
TOSMO	4	1.0	1.0	1.2	1.6	2.5	0.6				
COUMI	4	1.0	1.0	1.0	1.1	1.3	0.1				
COUMO	4	1.0	1.0	1.0	1.1	1.4	0.1	50			
TOCAL	17	1 0	1 4	2.2	Base Flow	11	2.2	0.4			
TOSMI	17	1.0	1.4		3.6	11 11					
TOSMO		1.0 1.0	1.0	1.0	1.3 1.9		0.3				
COUMI	17		1.0	1.0		11	0.9				
COUMO	17	1.0	1.0	1.0	1.2	11	0.2	53			

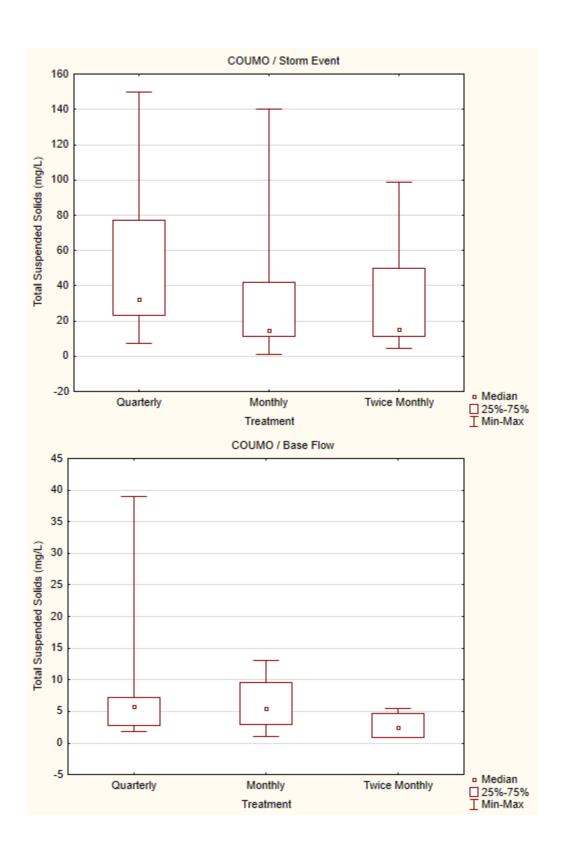
ug/L: micrograms per Liter

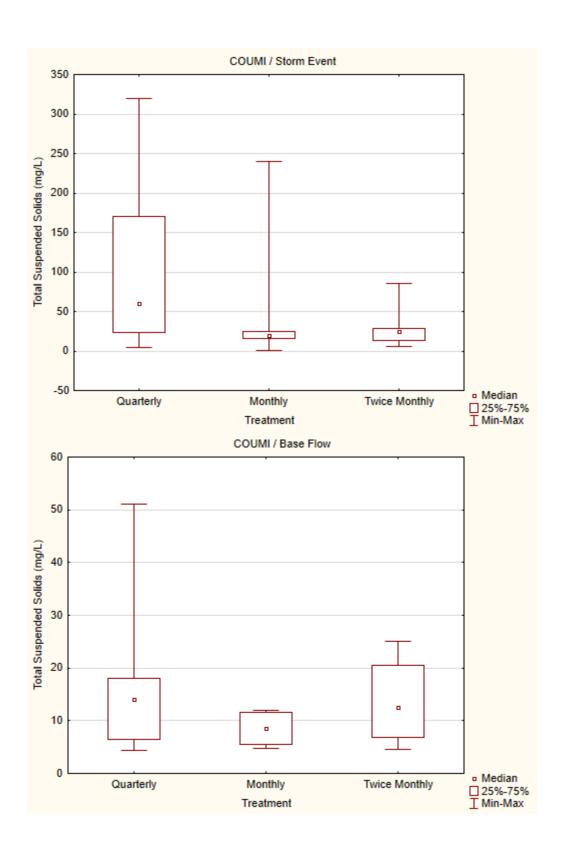
Table D-3. Summary Statistics for Particulate Copper (ug/L) by Station, Street Sweeping Treatment, and Sampling Event Type. Ν Minimum 25th Percentile Median 75th Percentile Maximum Interquartile Range Quarterly Sweeping – Storm Events TOSMI 19 0.2 6.2 15 3.4 TOSMO 19 1.1 3.0 5.1 7.0 37 4.0 COUMI 19 0.3 2.7 1.5 3.0 4.2 13 соимо 19 0.3 1.6 2.2 3.4 8.9 1.8 Monthly Sweeping - Storm Events TOSMI 10 0.7 2.2 3.3 6.3 17 4.2 TOSMO 10 0.7 1.8 2.1 2.7 26 0.9 COUMI 10 0.3 0.7 1.3 12 8.0 1.6 соимо 10 0.2 1.0 1.3 1.8 7.2 0.7 Twice Monthly Sweeping -Storm Events TOSMI 15 0.7 1.9 3.4 4.3 42 2.4 0.7 TOSMO 15 0.2 2.6 5.6 5.0 16 COUMI 15 0.0 0.8 1.5 2.1 5.0 1.4 соимо 15 0.1 0.9 1.3 2.3 19 1.4 All Storm Events TOSMI 44 0.20 5.8 42 3.8 2.0 3.4 TOSMO 44 0.20 1.8 3.1 6.1 37 4.4 COUMI 44 1.1 0.00 1.5 3.3 13 2.3 соимо 44 0.10 1.1 1.6 2.8 19 1.8 Quarterly Sweeping - Base Flow TOSMI 9 0.0 0.2 0.4 1.9 10 1.7 9 0.0 TOSMO 0.0 0.0 0.3 10 0.3 COUMI 9 0.0 0.0 0.0 5.0 10 5.0 соимо 9 0.0 0.0 0.0 0.1 10 0.1 Monthly Sweeping - Base Flow TOSMI 4 1.1 1.2 4.6 3.4 2.2 8.9 TOSMO 4 0.0 0.0 0.1 0.4 0.9 0.4 COUMI 4 0.0 0.3 0.7 0.9 1.0 0.6 соимо 4 0.0 0.1 0.2 0.2 0.2 0.1 Twice Monthly Sweeping - Base Flow TOSMI 4 0.3 0.3 0.9 1.8 3.1 1.5 TOSMO 4 0.0 0.0 0.2 0.6 1.5 0.6 COUMI 4 0.0 0.0 0.0 0.0 0.0 0.0 соимо 4 0.0 0.0 0.0 0.1 0.4 0.1 All Base Flow TOSMI 17 0.0 0.3 1.1 2.6 10 2.3 TOSMO 17 0.0 0.0 0.0 0.3 10 0.3 COUMI 17 0.0 0.0 0.0 0.9 10 0.9 соимо 17 0.0 0.0 0.0 0.1 10 0.1

ug/L: micrograms per Liter

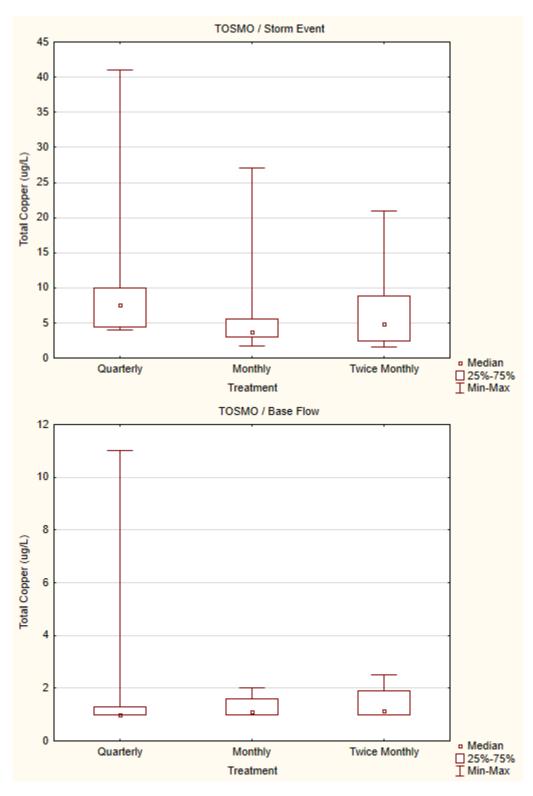

Appendix E

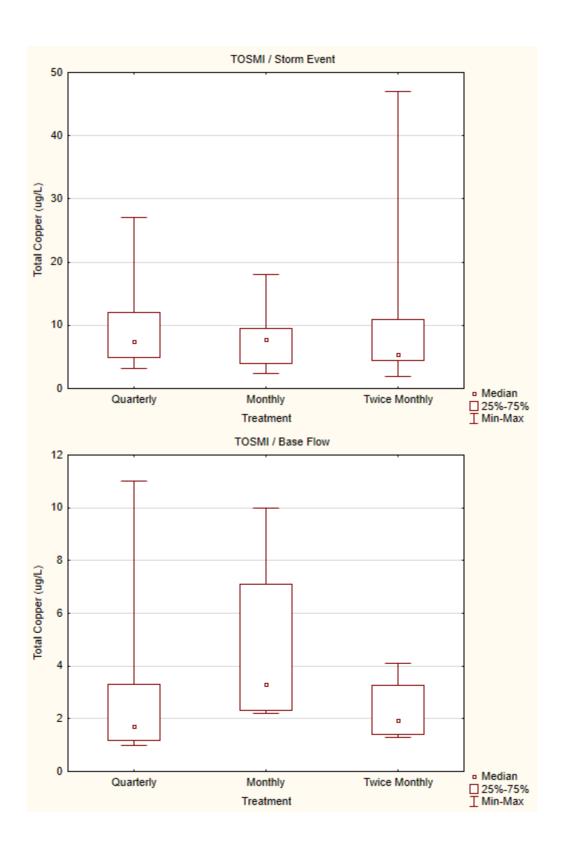

Box Plots for Total Suspended Solids, Total Copper, and Particulate Copper

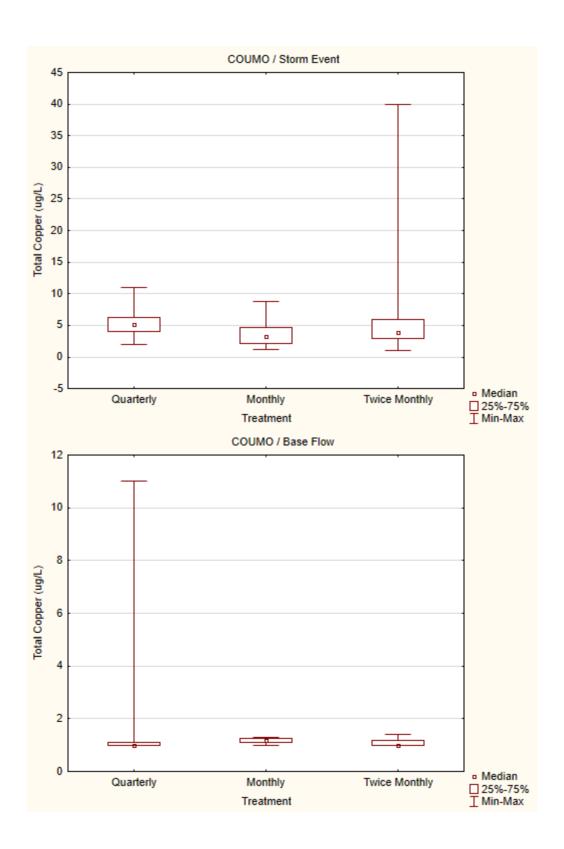


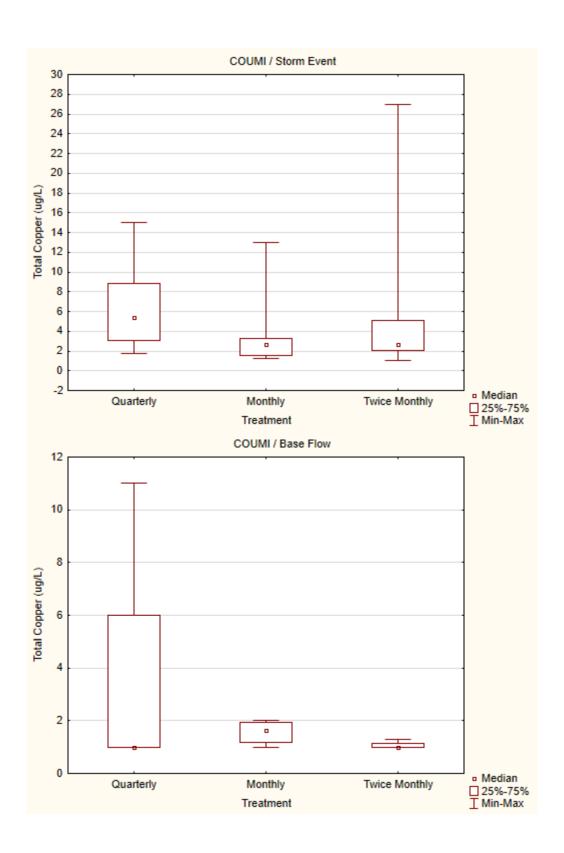

Box Plots for TSS, Total Copper and Particulate

Total Suspended Solids

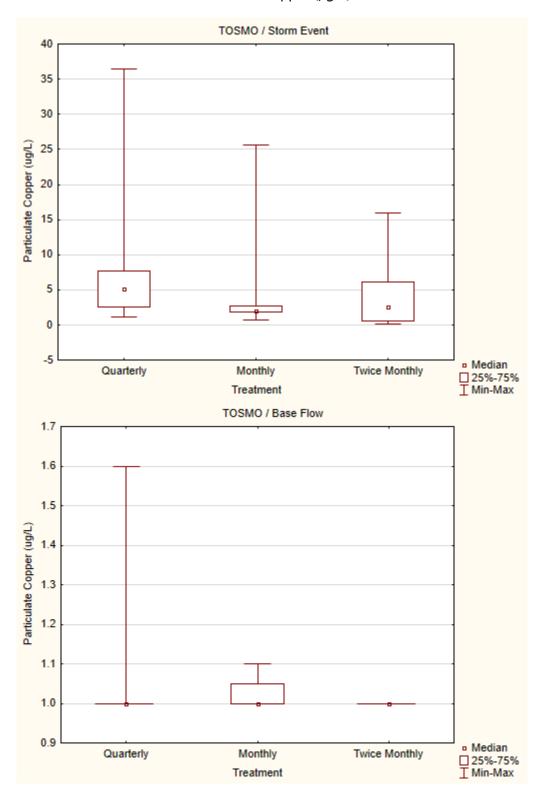


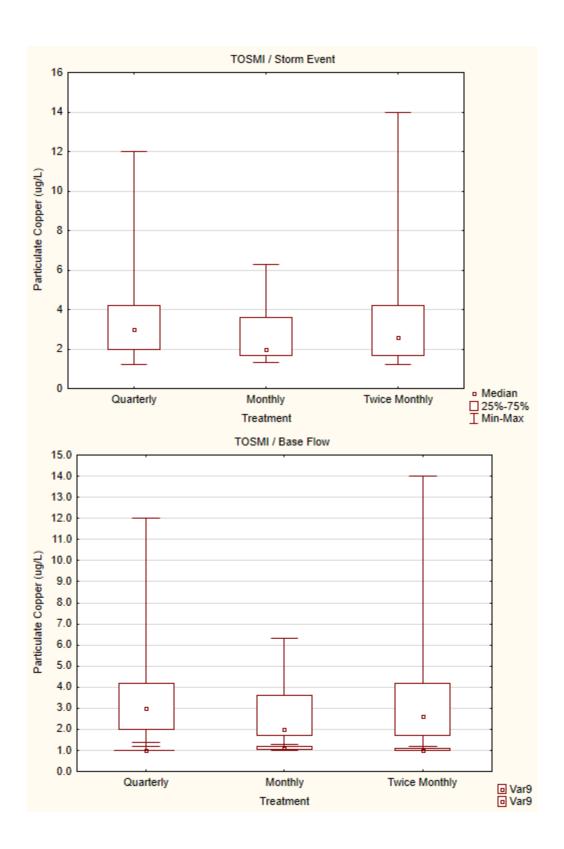


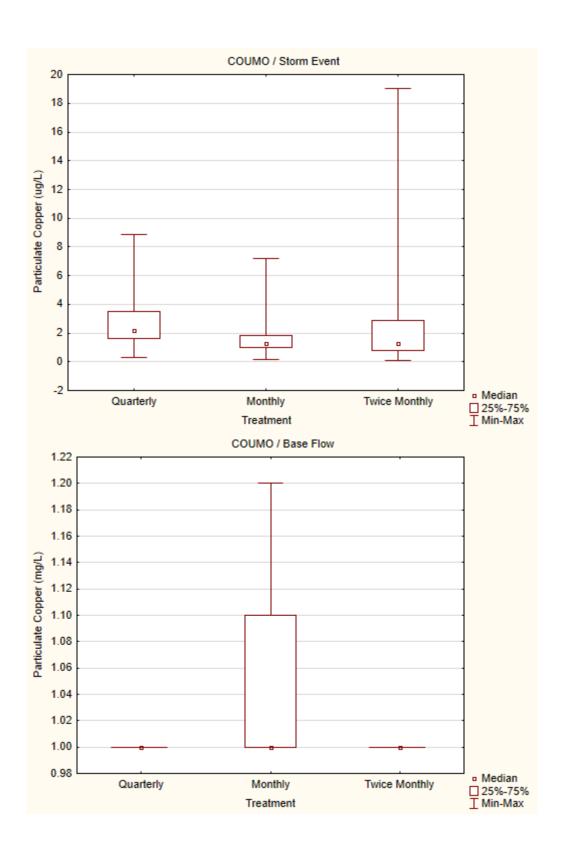


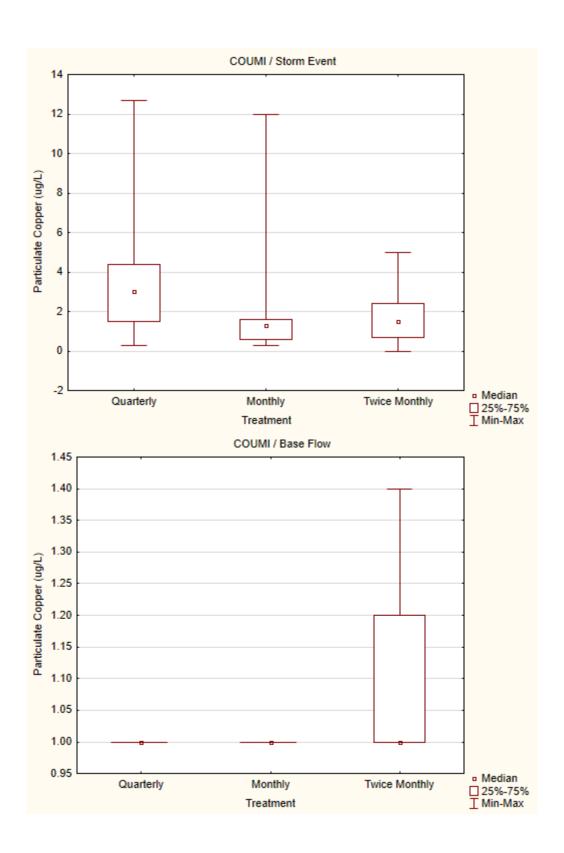


Total Copper (µg/L)









Particulate Copper (µg/L)

Appendix F

Mann-Whitney U Test Results

<u> </u>	1	e F-1. Mann-Whitney			
Station Type	Station	Parameter	Event Type	n	p-value
	TOSMO	Total Suspended Solids	Base	8	0.44285714
	TOSMO	Total Suspended Solids	Storm	27	0.82313749
	TOSMO	Total Copper	Base	8	0.79582401
	TOSMO	Total Copper	Storm	27	0.56783337
	TOSMO	1-Methylnaphthalene	Base	8	0.66940164
	TOSMO	1-Methylnaphthalene	Storm	22	0.10459125
	TOSMO	2-Methylnaphthalene	Base	8	0.66940164
	TOSMO	2-Methylnaphthalene	Storm	22	0.10459125
	TOSMO	Acenaphthene	Base	8	0.66940164
	TOSMO	Acenaphthene	Storm	22	0.10459125
	TOSMO	Acenaphthylene	Base	8	0.66940164
	TOSMO	Acenaphthylene	Storm	22	0.10459125
	TOSMO	Anthracene	Base	8	0.66940164
	TOSMO	Anthracene	Storm	22	0.1045912
	TOSMO	Benz[a]anthracene	Base	8	0.66940164
	TOSMO	Benz[a]anthracene	Storm	22	0.04937194
	TOSMO	Benzo(a)pyrene	Base	8	0.66940164
	TOSMO	Benzo(a)pyrene	Storm	22	0.1174789
Tosh Creek	TOSMO	Benzo(b)fluoranthene	Base	8	0.6694016
Watershed	TOSMO	Benzo(b)fluoranthene	Storm	22	0.6777267
Stations:	TOSMO	Benzo(ghi)perylene	Base	8	0.6694016
Increased	TOSMO	Benzo(ghi)perylene	Storm	22	0.2442745
Sweeping	TOSMO	Benzo(j,k)fluoranthene	Base	8	0.6694016
Experimental	TOSMO	Benzo(j,k)fluoranthene	Storm	22	0.0879003
2	TOSMO	Chrysene	Base	8	0.6694016
	TOSMO	Chrysene	Storm	22	0.1241754
	TOSMO	Dibenzo(a,h)anthracene	Base	8	0.6694016
	TOSMO	Dibenzo(a,h)anthracene	Storm	22	0.0879003
	TOSMO	Fluoranthene	Base	8	0.6694016
	TOSMO	Fluoranthene	Storm	22	0.1609442
	TOSMO	Fluorene	Base	8	0.6694016
	TOSMO	Fluorene	Storm	22	0.1045912
	TOSMO	Indeno(1,2,3-cd)pyrene	Base	8	0.6694016
	TOSMO	Indeno(1,2,3-cd)pyrene	Storm	22	0.1111703
	TOSMO	Naphthalene	Base	8	0.6694016
		<u> </u>	+		
	TOSMO	Naphthalene	Storm	22	0.1045912
	TOSMO	Phenanthrene	Base	8	0.6694016
	TOSMO	Phenanthrene	Storm	22	0.1609442
	TOSMO	Pyrene	Base	8	0.6694016
	TOSMO	Pyrene	Storm	22	0.1609442
	TOSMO	6PPD-quinone	Base	8	0.1714285
	TOSMO	6PPD-quinone	Storm	22	0.434783

TOSMI		Tabl	e F-1. Mann-Whitney	U Test Resul	lts.	
TOSMI	Station Type	Station	Parameter	Event Type	n	p-value
TOSMI		TOSMI	Total Suspended Solids	Base	8	0.385751705
TOSMI		TOSMI	Total Suspended Solids	Storm	27	0.704334748
TOSMI		TOSMI	Total Copper	Base	8	0.385751705
TOSMI		TOSMI	Total Copper	Storm	27	0.480532423
TOSMI		TOSMI	1-Methylnaphthalene	Base	8	0.229798693
TOSMI		TOSMI	1-Methylnaphthalene	Storm	22	0.080414695
TOSMI		TOSMI	2-Methylnaphthalene	Base	8	0.229798693
TOSMI		TOSMI	2-Methylnaphthalene	Storm	22	0.080414695
TOSMI		TOSMI	Acenaphthene	Base	8	0.229798693
TOSMI		TOSMI	Acenaphthene	Storm	22	0.080414695
TOSMI		TOSMI	Acenaphthylene	Base	8	0.229798693
TOSMI		TOSMI	Acenaphthylene	Storm	22	0.080414695
TOSMI Benz[a]anthracene Base 8 0.229798693 TOSMI Benz[a]anthracene Storm 22 0.120558463 TOSMI Benzo(a)pyrene Base 8 0.229798693 TOSMI Benzo(a)pyrene Storm 22 0.368020789 TOSMI Benzo(b)fluoranthene Base 8 0.229798693 Stations: TOSMI Benzo(ghi)perylene Base 8 0.229798693 Increased TOSMI Benzo(ghi)perylene Storm 22 0.63009194 Sweeping TOSMI Benzo(ghi)perylene Storm 22 0.63009194 Sweeping TOSMI Benzo(ji,k)fluoranthene Base 8 0.229798693 Experimental TOSMI Benzo(ji,k)fluoranthene Storm 22 0.63009194 Sweeping TOSMI Benzo(ji,k)fluoranthene Storm 22 0.1639224869 TOSMI Chrysene Storm 22 0.1639224869 TOSMI Dibenzo(a,h)anthracene Storm		TOSMI	Anthracene	Base	8	0.229798693
TOSMI		TOSMI	Anthracene	Storm	22	0.080414695
TOSMI		TOSMI	Benz[a]anthracene	Base	8	0.229798693
TOSMI		TOSMI	Benz[a]anthracene	Storm	22	0.120558463
Tosh Creek ToSMI Benzo(b)fluoranthene Base 8 0.229798693 Watershed TOSMI Benzo(ghi)perylene Storm 22 0.838710775 Stations: Increased TOSMI Benzo(ghi)perylene Storm 22 0.63009194 Sweeping TOSMI Benzo(ghi)perylene Storm 22 0.63009194 Experimental TOSMI Benzo(ghi)perylene Storm 22 0.63009194 TOSMI Benzo(ghi)perylene Storm 22 0.6309194 TOSMI Benzo(j,k)fluoranthene Base 8 0.229798693 TOSMI Chrysene Storm 22 0.16392248 TOSMI Dibenzo(a,h)anthracene Base 8 0.229798693 TOSMI Fluoranthene Base 8 0.229798693 TOSMI Fluoranthene Storm 22 0.080414693 TOSMI Fluorene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Base 8		TOSMI	Benzo(a)pyrene	Base	8	0.229798693
Watershed Stations: TOSMI Benzo(b)fluoranthene Storm 22 0.838710775 Increased Sweeping Increased Sweeping Experimental TOSMI Benzo(ghi)perylene Storm 22 0.63009194 Experimental TOSMI Benzo(j,k)fluoranthene Base 8 0.229798693 TOSMI Benzo(j,k)fluoranthene Storm 22 0.163922485 TOSMI Chrysene Base 8 0.229798693 TOSMI Dibenzo(a,h)anthracene Base 8 0.229798693 TOSMI Dibenzo(a,h)anthracene Storm 22 0.080414693 TOSMI Fluoranthene Storm 22 0.080414693 TOSMI Fluoranthene Storm 22 0.080414693 TOSMI Fluorene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.667989667 TOSMI Naphthalene Storm 22 0.080414693		TOSMI	Benzo(a)pyrene	Storm	22	0.368020785
Watershed Stations: TOSMI Benzo(b)fluoranthene Storm 22 0.838710775 Increased Sweeping Increased Sweeping Experimental TOSMI Benzo(ghi)perylene Storm 22 0.63009194 Experimental TOSMI Benzo(j,k)fluoranthene Base 8 0.229798693 TOSMI Benzo(j,k)fluoranthene Storm 22 0.163922485 TOSMI Chrysene Base 8 0.229798693 TOSMI Dibenzo(a,h)anthracene Base 8 0.229798693 TOSMI Dibenzo(a,h)anthracene Storm 22 0.080414693 TOSMI Fluoranthene Storm 22 0.080414693 TOSMI Fluoranthene Storm 22 0.080414693 TOSMI Fluorene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.667989667 TOSMI Naphthalene Storm 22 0.080414693	Tosh Creek	TOSMI	Benzo(b)fluoranthene	Base	8	0.229798693
TOSMI	Watershed	TOSMI	Benzo(b)fluoranthene	Storm	22	0.838710775
TOSMI	Stations:	TOSMI	Benzo(ghi)perylene	Base	8	0.229798693
TOSMI	Increased	TOSMI	Benzo(ghi)perylene	Storm	22	0.63009194
TOSMI Chrysene Base 8 0.229798693 TOSMI Chrysene Storm 22 0.578924598 TOSMI Dibenzo(a,h)anthracene Base 8 0.229798693 TOSMI Dibenzo(a,h)anthracene Storm 22 0.080414695 TOSMI Fluoranthene Storm 22 0.080414695 TOSMI Fluorene Storm 22 0.080414695 TOSMI Fluorene Storm 22 0.080414695 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414695 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Base 8 0.229798693 TOSMI <t< td=""><td>Sweeping</td><td>TOSMI</td><td>Benzo(j,k)fluoranthene</td><td>Base</td><td>8</td><td>0.229798693</td></t<>	Sweeping	TOSMI	Benzo(j,k)fluoranthene	Base	8	0.229798693
TOSMI Chrysene Base 8 0.229798693 TOSMI Chrysene Storm 22 0.578924598 TOSMI Dibenzo(a,h)anthracene Base 8 0.229798693 TOSMI Dibenzo(a,h)anthracene Storm 22 0.080414695 TOSMI Fluoranthene Storm 22 0.080414695 TOSMI Fluorene Base 8 0.229798693 TOSMI Fluorene Storm 22 0.080414695 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414695 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Base 8 0.229798693 TOSMI	Experimental	TOSMI	Benzo(j,k)fluoranthene	Storm	22	0.163922489
TOSMI Chrysene Storm 22 0.578924598 TOSMI Dibenzo(a,h)anthracene Base 8 0.229798693 TOSMI Dibenzo(a,h)anthracene Storm 22 0.080414695 TOSMI Fluoranthene Base 8 0.229798693 TOSMI Fluorene Storm 22 0.080414695 TOSMI Fluorene Storm 22 0.080414695 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Storm 22 0.667989667 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414693 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414693 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414693 TOSMI	•	TOSMI	Chrysene	Base	8	0.229798693
TOSMI Dibenzo(a,h)anthracene Storm 22 0.080414699 TOSMI Fluoranthene Base 8 0.229798693 TOSMI Fluoranthene Storm 22 0.080414699 TOSMI Fluorene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Storm 22 0.667989667 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414699 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414699		TOSMI	Chrysene	Storm	22	0.578924598
TOSMI Fluoranthene Base 8 0.229798693 TOSMI Fluoranthene Storm 22 0.080414695 TOSMI Fluorene Base 8 0.229798693 TOSMI Fluorene Storm 22 0.080414695 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414695 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI Pyrene Storm 22 0.080414695 TOSMI Pyrene Storm 22 0.080414695		TOSMI	Dibenzo(a,h)anthracene	Base	8	0.229798693
TOSMI Fluoranthene Storm 22 0.080414699 TOSMI Fluorene Base 8 0.229798693 TOSMI Fluorene Storm 22 0.080414699 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414695 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI Pyrene Storm 22 0.080414695 TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI	Dibenzo(a,h)anthracene	Storm	22	0.080414695
TOSMI Fluorene Base 8 0.229798693 TOSMI Fluorene Storm 22 0.080414693 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Storm 22 0.667989667 TOSMI Naphthalene Base 8 0.229798693 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414693 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414693 TOSMI Pyrene Storm 22 0.080414693 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI	Fluoranthene	Base	8	0.229798693
TOSMI Fluorene Storm 22 0.080414695 TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Storm 22 0.667989667 TOSMI Naphthalene Base 8 0.229798693 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI	Fluoranthene	Storm	22	0.080414695
TOSMI Indeno(1,2,3-cd)pyrene Base 8 0.229798693 TOSMI Indeno(1,2,3-cd)pyrene Storm 22 0.667989667 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414699 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414699 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414699 TOSMI Pyrene Storm 22 0.080414699 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI	Fluorene	Base	8	0.229798693
TOSMI Indeno(1,2,3-cd)pyrene Storm 22 0.667989667 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414695 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI	Fluorene	Storm	22	0.080414695
TOSMI Indeno(1,2,3-cd)pyrene Storm 22 0.667989667 TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414695 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI	Indeno(1,2,3-cd)pyrene	Base	8	0.229798693
TOSMI Naphthalene Base 8 0.229798693 TOSMI Naphthalene Storm 22 0.080414695 TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI		<u> </u>	22	0.667989667
TOSMI Phenanthrene Base 8 0.229798693 TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI	Naphthalene	Base		0.229798693
TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143		TOSMI	Naphthalene	Storm	22	0.080414695
TOSMI Phenanthrene Storm 22 0.080414695 TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143			Phenanthrene	Base	8	0.229798693
TOSMI Pyrene Base 8 0.229798693 TOSMI Pyrene Storm 22 0.080414693 TOSMI 6PPD-quinone Base 8 0.442857143						0.080414695
TOSMI Pyrene Storm 22 0.080414695 TOSMI 6PPD-quinone Base 8 0.442857143			1			0.229798693
TOSMI 6PPD-quinone Base 8 0.442857143			† ·		22	0.080414695
			,	Base		0.442857143
		TOSMI	6PPD-quinone	Storm	22	0.551168646

	Tabl	e F-1. Mann-Whitney	U Test Resul	ts.	
Station Type	Station	Parameter	Event Type	n	p-value
	COUMO	Total Suspended Solids	Base	8	0.055105091
	COUMO	Total Suspended Solids	Storm	27	0.643012335
	COUMO	Total Copper	Base	8	0.56110886
	COUMO	Total Copper	Storm	27	0.80367635
	COUMO	1-Methylnaphthalene	Base	8	0.178085164
	COUMO	1-Methylnaphthalene	Storm	22	0.445657207
	COUMO	2-Methylnaphthalene	Base	8	0.178085164
	COUMO	2-Methylnaphthalene	Storm	22	0.445657207
	COUMO	Acenaphthene	Base	8	0.178085164
	COUMO	Acenaphthene	Storm	22	0.445657207
	COUMO	Acenaphthylene	Base	8	0.178085164
	COUMO	Acenaphthylene	Storm	22	0.445657207
	COUMO	Anthracene	Base	8	0.178085164
	COUMO	Anthracene	Storm	22	0.445657207
	COUMO	Benz[a]anthracene	Base	8	0.178085164
	COUMO	Benz[a]anthracene	Storm	22	0.306286521
	COUMO	Benzo(a)pyrene	Base	8	0.178085164
	COUMO	Benzo(a)pyrene	Storm	22	0.446683713
Country Creek	COUMO	Benzo(b)fluoranthene	Base	8	0.091575102
Watershed	COUMO	Benzo(b)fluoranthene	Storm	22	0.679155652
Stations:	COUMO	Benzo(ghi)perylene	Base	8	0.178085164
No Increased	COUMO	Benzo(ghi)perylene	Storm	22	0.473282005
Sweeping	COUMO	Benzo(j,k)fluoranthene	Base	8	0.178085164
Control	COUMO	Benzo(j,k)fluoranthene	Storm	22	0.355059613
	COUMO	Chrysene	Base	8	0.178085164
	COUMO	Chrysene	Storm	22	0.473282005
	COUMO	Dibenzo(a,h)anthracene	Base	8	0.178085164
	COUMO	Dibenzo(a,h)anthracene	Storm	22	0.446683713
	COUMO	Fluoranthene	Base	8	0.178085164
	COUMO	Fluoranthene	Storm	22	0.445657207
	COUMO	Fluorene	Base	8	0.178085164
	COUMO	Fluorene	Storm	22	0.445657207
	COUMO	Indeno(1,2,3-cd)pyrene	Base	8	0.178085164
	COUMO	Indeno(1,2,3-cd)pyrene	Storm	22	0.566130121
	COUMO	Naphthalene	Base	8	0.178085164
	COUMO	Naphthalene	Storm	22	0.445657207
	COUMO	Phenanthrene	Base	8	0.178085164
	COUMO	Phenanthrene	Storm	22	0.445657207
	COUMO	Pyrene	Base	8	0.178085164
	COUMO	Pyrene	Storm	22	0.445657207
	COUMO	6PPD-quinone	Base	8	0.171428571
	COUMO	6PPD-quinone	Storm	22	0.985967464

	Table F-1. Mann-Whitney U Test Results.							
Station Type	Station	Parameter	Event Type	n	p-value			
	COUMI	Total Suspended Solids	Base	8	0.657142857			
	COUMI	Total Suspended Solids	Storm	27	0.678566537			
	COUMI	Total Copper	Base	8	0.062047329			
	COUMI	Total Copper	Storm	27	0.605920034			
	COUMI	1-Methylnaphthalene	Base	8	0.7790254			
	COUMI	1-Methylnaphthalene	Storm	22	0.017973601			
	COUMI	2-Methylnaphthalene	Base	8	0.7790254			
	COUMI	2-Methylnaphthalene	Storm	22	0.017973601			
	COUMI	Acenaphthene	Base	8	0.7790254			
	COUMI	Acenaphthene	Storm	22	0.017973601			
	COUMI	Acenaphthylene	Base	8	0.7790254			
	COUMI	Acenaphthylene	Storm	22	0.017973601			
	COUMI	Anthracene	Base	8	0.7790254			
	COUMI	Anthracene	Storm	22	0.017973601			
	COUMI	Benz[a]anthracene	Base	8	0.7790254			
	COUMI	Benz[a]anthracene	Storm	22	0.370340486			
	COUMI	Benzo(a)pyrene	Base	8	0.849738844			
	COUMI	Benzo(a)pyrene	Storm	22	0.298168753			
Country Creek	COUMI	Benzo(b)fluoranthene	Base	8	0.849738844			
Watershed	COUMI	Benzo(b)fluoranthene	Storm	22	0.616607587			
Stations:	COUMI	Benzo(ghi)perylene	Base	8	0.849738844			
No Increased	COUMI	Benzo(ghi)perylene	Storm	22	0.177119322			
Sweeping	COUMI	Benzo(j,k)fluoranthene	Base	8	0.7790254			
Control	COUMI	Benzo(j,k)fluoranthene	Storm	22	0.081050354			
	COUMI	Chrysene	Base	8	0.849738844			
	COUMI	Chrysene	Storm	22	0.629338008			
	COUMI	Dibenzo(a,h)anthracene	Base	8	0.7790254			
	COUMI	Dibenzo(a,h)anthracene	Storm	22	0.009794295			
	COUMI	Fluoranthene	Base	8	0.7790254			
	COUMI	Fluoranthene	Storm	22	0.013402698			
	COUMI	Fluorene	Base	8	0.7790254			
	COUMI	Fluorene	Storm	22	0.017973601			
	COUMI	Indeno(1,2,3-cd)pyrene	Base	8	0.849738844			
	COUMI	Indeno(1,2,3-cd)pyrene	Storm	22	0.629373613			
	COUMI	Naphthalene	Base	8	0.7790254			
	COUMI	Naphthalene	Storm	22	0.017973601			
	COUMI	Phenanthrene	Base	8	0.7790254			
	COUMI	Phenanthrene	Storm	22	0.017973601			
	COUMI	Pyrene	Base	8	0.7790254			
	COUMI	Pyrene	Storm	22	0.013402698			
	COUMI	6PPD-quinone	Base	8	0.242857143			
	COUMI	6PPD-quinone	Storm	22	0.551168646			
3,,,	1	rificant difference was dete						

^a Values in red indicate a significant difference was detected for the indicated parameter between the street sweeping treatments based on results from a one-tailed Mann-Whitney U test at an alevel of 0.05.

Appendix G

Kruskal-Wallis Test Results

				Mean Rank by				
Station Type	Station	Parameter	Event Type	Quarterly	Monthly	Twice Monthly	H-Statistic	p-value ^a
7,	TOSMI	Total Copper	Storm	23.3	21.7	20.7	0.3	0.8440
	TOSMI	Total Supended Solids	Storm	24.4	18.5	21.3	1.5	0.4726
	TOSMI	Particulate Copper	Storm	24.4	20.8	21.2	0.8	0.6790
	TOSMI	Total Copper	Base	7.6	12.6	8.6	2.8	0.2433
Tosh Creek	TOSMI	Total Supended Solids	Base	8.7	10.1	6.5	1.2	0.5517
Watershed Stations:	TOSMI	Particulate Copper	Base	7.7	12.5	8.5	2.6	0.2733
Increased Sweeping Experimental	TOSMO	Total Copper	Storm	27.1	16.9	19.3	5.3	0.0708
Experimental	TOSMO	Total Supended Solids	Storm	26.5	14.2	19.5	6.7	0.0345
	тоѕмо	Particulate Copper	Storm	27.1	18.9	19.0	4.3	0.1136
	TOSMO	Total Copper	Base	8.7	9.0	9.6	0.1	0.9494
	TOSMO	Total Supended Solids	Base	8.7	10.1	6.5	3.4	0.1873
	тоѕмо	Particulate Copper	Base	8.6	9.0	9.9	0.2	0.9032
	COUMI	Total Copper	Storm	28.0	16.3	18.6	7.3	0.0263
	COUMI	Total Supended Solids	Storm	28.2	16.7	17.4	8.2	0.0165
	COUMI	Particulate Copper	Storm	28.5	16.8	18.8	7.4	0.0249
	COUMI	Total Copper	Base	9.2	11.0	6.5	1.9	0.3857
Country Creek	COUMI	Total Supended Solids	Base	9.8	6.8	9.5	1.0	0.5921
Watershed Stations:	COUMI	Particulate Copper	Base	9.9	11.3	4.8	4.6	0.1013
No Increased Sweeping Control	соимо	Total Copper	Storm	26.5	16.5	20.3	4.5	0.1031
Sweeping Control	соимо	Total Supended Solids	Storm	27.6	18.1	19.1	5.2	0.0736
	соимо	Particulate Copper	Storm	27.9	17.8	18.8	6.1	0.0484
	соимо	Total Copper	Base	8.1	11.9	8.1	2.1	0.3444
	соимо	Total Supended Solids	Base	8.7	10.1	6.5	2.6	0.2731
	соимо	Particulate Copper	Base	8.2	11.6	8.1	1.8	0.4093

^a Values in red indicate a significant difference was detected for the indicated parameter between the street sweeping treatments based on results from the Kruskal-Wallis test at an a-level of 0.05.

	Table G-2. Post-Hoc Multiple Range Test Results. ^a								
Treatment	Station	Parameter	Event Type	Quarterly	Monthly	Twice Monthly			
Quarterly	COUMO	Total Suspended Solids	Base Flow		1.000000	0.236471			
Monthly	COUMO	Total Suspended Solids	Base Flow	1.000000		0.484288			
Twice Monthly	COUMO	Total Suspended Solids	Base Flow	0.236471	0.484288				
Quarterly	COUMO	Copper	Base Flow		0.644531	1.000000			
Monthly	COUMO	Copper	Base Flow	0.644531		0.880865			
Twice Monthly	COUMO	Copper	Base Flow	1.000000	0.880865				
Quarterly	TOSMI	Total Suspended Solids	Base Flow		1.000000	1.000000			
Monthly	TOSMI	Total Suspended Solids	Base Flow	1.000000		0.833477			
Twice Monthly	TOSMI	Total Suspended Solids	Base Flow	1.000000	0.833477				
Quarterly	TOSMI	Copper	Base Flow		0.284408	1.000000			
Monthly	TOSMI	Copper	Base Flow	0.284408		0.787855			
Twice Monthly	TOSMI	Copper	Base Flow	1.000000	0.787855				
Quarterly	COUMI	Total Suspended Solids	Base Flow		0.955163	1.000000			
Monthly	СОИМІ	Total Suspended Solids	Base Flow	0.955163		1.000000			
Twice Monthly	СОИМІ	Total Suspended Solids	Base Flow	1.000000	1.000000				
Quarterly	COUMI	Copper	Base Flow		1.000000	1.000000			
Monthly	СОИМІ	Copper	Base Flow	1.000000		0.622735			
Twice Monthly	COUMI	Copper	Base Flow	1.000000	0.622735				
Quarterly	TOSMO	Total Suspended Solids	Base Flow		0.265913	0.548684			
Monthly	TOSMO	Total Suspended Solids	Base Flow	0.265913		1.000000			
Twice Monthly	TOSMO	Total Suspended Solids	Base Flow	0.548684	1.000000				
Quarterly	TOSMO	Copper	Base Flow		1.000000	1.000000			
Monthly	TOSMO	Copper	Base Flow	1.000000		1.000000			
Twice Monthly	TOSMO	Copper	Base Flow	1.000000	1.000000				

		Table G-2. Post-H	loc Multiple Rang	e Test Results.		
Treatment	Station	Parameter	Event Type	Quarterly	Monthly	Twice Monthly
Quarterly	COUMO	Copper	Storm Event		0.118858	0.448809
Monthly	COUMO	Copper	Storm Event	0.118858		1.000000
Twice Monthly	COUMO	Copper	Storm Event	0.448809	1.000000	
Quarterly	COUMO	Total Suspended Solids	Storm Event		0.174849	0.167367
Monthly	COUMO	Total Suspended Solids	Storm Event	0.174849		1.000000
Twice Monthly	COUMO	Total Suspended Solids	Storm Event	0.167367	1.000000	
Quarterly	TOSMI	Copper	Storm Event		1.000000	1.000000
Monthly	TOSMI	Copper	Storm Event	1.000000		1.000000
Twice Monthly	TOSMI	Copper	Storm Event	1.000000	1.000000	
Quarterly	TOSMI	Total Suspended Solids	Storm Event		0.710406	1.000000
Monthly	TOSMI	Total Suspended Solids	Storm Event	0.710406		1.000000
Twice Monthly	TOSMI	Total Suspended Solids	Storm Event	1.000000	1.000000	
Quarterly	COUMI	Copper	Storm Event		0.041876	0.069668
Monthly	COUMI	Copper	Storm Event	0.041876		1.000000
Twice Monthly	COUMI	Copper	Storm Event	0.069668	1.000000	
Quarterly	COUMI	Total Suspended Solids	Storm Event		0.050523	0.045856
Monthly	COUMI	Total Suspended Solids	Storm Event	0.050523		1.000000
Twice Monthly	COUMI	Total Suspended Solids	Storm Event	0.045856	1.000000	
Quarterly	TOSMO	Copper	Storm Event		0.103461	0.192682
Monthly	TOSMO	Copper	Storm Event	0.103461		1.000000
Twice Monthly	TOSMO	Copper	Storm Event	0.192682	1.000000	
Quarterly	TOSMO	Total Suspended Solids	Storm Event		0.019307	0.174323
Monthly	TOSMO	Total Suspended Solids	Storm Event	0.019307		0.945682
Twice Monthly	TOSMO	Total Suspended Solids	Storm Event	0.174323	0.945682	

Treatment	Station	Table G-2. Post-H	Event Type	Quarterly	Monthly	Twice Monthly
Quarterly	COUMO	Particulate Copper	Base Flow	Quarterry	0.786411	1.000000
Monthly	COUMO	Particulate Copper	Base Flow	0.786411	0.700411	0.980968
Twice Monthly	COUMO		Base Flow	1.000000	0.980968	0.980908
,		Particulate Copper	90	1.000000		1,000000
Quarterly	TOSMI	Particulate Copper	Base Flow		0.333628	1.000000
Monthly	TOSMI	Particulate Copper	Base Flow	0.333628		0.787855
Twice Monthly	TOSMI	Particulate Copper	Base Flow	1.000000	0.787855	
Quarterly	COUMI	Particulate Copper	Base Flow		1.000000	0.271095
Monthly	COUMI	Particulate Copper	Base Flow	1.000000		0.206111
Twice Monthly	СОИМІ	Particulate Copper	Base Flow	0.271095	0.206111	
Quarterly	TOSMO	Particulate Copper	Base Flow		1.000000	1.000000
Monthly	TOSMO	Particulate Copper	Base Flow	1.000000		1.000000
Twice Monthly	TOSMO	Particulate Copper	Base Flow	1.000000	1.000000	
Quarterly	COUMO	Particulate Copper	Storm Event		0.126461	0.115563
Monthly	COUMO	Particulate Copper	Storm Event	0.126461		1.000000
Twice Monthly	COUMO	Particulate Copper	Storm Event	0.115563	1.000000	
Quarterly	TOSMI	Particulate Copper	Storm Event		1.000000	1.000000
Monthly	TOSMI	Particulate Copper	Storm Event	1.000000		1.000000
Twice Monthly	TOSMI	Particulate Copper	Storm Event	1.000000	1.000000	
Quarterly	COUMI	Particulate Copper	Storm Event		0.058451	0.086031
Monthly	COUMI	Particulate Copper	Storm Event	0.058451	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.000000
Twice Monthly	COUMI	Particulate Copper	Storm Event	0.086031	1.000000	
Quarterly	TOSMO	Particulate Copper	Storm Event		0.302839	0.203872
Monthly	TOSMO	Particulate Copper	Storm Event	0.302839		1.000000
Twice Monthly	TOSMO	Particulate Copper	Storm Event	0.203872	1.000000	

^a Values in red indicate a significant difference was detected for the indicated parameter between the street sweeping treatments at an a-level of 0.05.