Federal Way S. 356th Street Project: Effectiveness of Retrofit and Expansion

Kate Macneale, King County Water and Land Resources
with
Fei Tang and Theresa Thurlow, City of Federal Way
King County Environmental Laboratory
Did retrofit and expansion improve flow control and treatment?
S. 356th Street Detention Facility

• Built in 1997 to treat runoff from 189-acre basin
 • combined detention and stormwater treatment wetland (“wetland”)
• Expanded in 2014
• In-series “wetland” to increase treatment
• 2 bioretention facilities to treat previously untreated runoff from 22-acre basin
New “wetland”

- Increase capacity
- Unlined, but infiltration limited
New “wetland”

- Increase capacity
- Unlined, but infiltration limited

Bioretention facilities

- New capacity
- Underdrained
 - East: drains quickly
 - West: drains slowly
Untreated

- East bioretention facility
- West bioretention facility
- Wetland complex

Treated

In

Out
Receiving waters:
North Fork West Hylebos Creek
Sampling

• Flow at 7 locations
• 18 storms sampled for TSS, metals, nutrients, PAHs
• 10 storms for PCBs, fecal coliforms
• 6 storms for toxicity

• Pre- and post-retrofit turbidity and temperature data
Flow Monitoring Results

- Flow-weighted composite sampling successful
- Reduction in peak flows and delay in peak timing at all facilities

Rain = 0.78 inches
Flow Monitoring Results continued

• But, less certainty in flow volume estimates
• Unclear extent of groundwater intrusion and/or infiltration

• Results focus on concentration changes rather than mass loadings
Treatment?

Concentrations in effluent vs. influent:

Significantly reduced

Somewhat reduced

Somewhat increased

Significantly increased
Caveats

• Pollutant concentrations in bioretention influent were lower than in wetland complex influent

• Bioretention soil mix was standard 60% sand/40% compost mix but it was 30 inches deep

• 90% of total flow is through the wetland complex
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Bioretention Facility</th>
<th>Wetland Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East</td>
<td>West</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Take Home:
- System reduced total suspended solids (TSS) loads
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Bioretention Facility</th>
<th>Wetland Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East</td>
<td>West</td>
</tr>
<tr>
<td>Zinc, total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, dissolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, dissolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, dissolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Cadmium, dissolved</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Take Home:
- **Mixed results**, but complicated by low influent concentrations in bioretention facilities
- System reduced loads of total metals
- System source of dissolved metals
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Bioretention Facility</th>
<th>Wetland Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East</td>
<td>West</td>
</tr>
<tr>
<td>Total PAHs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PCBs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Take Home:
• System reduced loads of PAHs and PCBs
Pollutant Distribution

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Bioretention Facility</th>
<th>Wetland Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East</td>
<td>West</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthophosphate P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate + Nitrite N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Take Home:
- Bioretention facilities: large source of N & P (~80% of total phosphorus load)
- Overall system is a source of all nutrients except ammonia
Study Conclusions

• Overall, effectiveness determined by wetland complex (90% of flow)
• Bioretention facilities are large sources of phosphorus and nitrogen (these should not be built as is in basins with nutrient concerns)
• Pre- and post-retrofit data indicate treatment improved
Lessons Learned

• Flow monitoring is very challenging.

• Anticipate delays.

• Groundwater may complicate matters.

• Some questions may be answered with cheap(er) continuous data.

• Urban basins are subject to change.
Questions?

kate.macneale@kingcounty.gov
Example: Storm #10 East bioretention facility

Rain = 0.78 inches
Example: Storm #10 East bioretention facility

- Inflow = 12200 cubic feet
- Outflow = 8300 cubic feet
- Rain = 0.78 inches
Example: Storm #10 East bioretention facility

- Inflow = 12200 cubic feet
- Outflow = 8300 cubic feet
- Rain = 0.78 inches

Reduced peak flows

Infiltration