

Federal Way S. 356th Street Project: Effectiveness of Retrofit and Expansion

Kate Macneale, King County Water and Land Resources with Fei Tang and Theresa Thurlow, City of Federal Way

King County Environmental Laboratory

Did retrofit and expansion improve flow control and treatment?

S. 356th Street Detention Facility

- Built in 1997 to treat runoff from 189-acre basin
 - combined detention and stormwater treatment wetland ("wetland")
- Expanded in 2014
- In-series "wetland" to increase treatment
- 2 bioretention facilities to treat previously untreated runoff from 22-acre basin

New "wetland"

- Increase capacity
- Unlined, but infiltration limited

Effectiveness Study

New "wetland"

- Increase capacity
- Unlined, but infiltration limited

Bioretention facilities

- New capacity
- Underdrained
 - East: drains quickly
 - West: drains slowly

Out

- East bioretention facility
- West bioretention facility
- Wetland complex

Receiving waters: North Fork West Hylebos Creek

Sampling

ormwater Action Monitorin

- Flow at 7 locations
- 18 storms sampled for TSS, metals, nutrients, PAHs
- 10 storms for PCBs, fecal coliforms
- 6 storms for toxicity
- Pre- and post-retrofit turbidity and temperature data

Flow Monitoring Results

- Flow-weighted composite sampling successful
- Reduction in peak flows and delay in peak timing at all facilities

Flow Monitoring Results continued

- But, less certainty in flow volume estimates
- Unclear extent of groundwater intrusion and/or infiltration
- Results focus on concentration changes rather than mass loadings

Treatment?

Concentrations in effluent vs. influent:

Significantly reduced

Somewhat reduced

Somewhat increased

Significantly increased

Caveats

- Pollutant concentrations in bioretention influent were lower than in wetland complex influent
- Bioretention soil mix was standard
 60% sand/40% compost mix but it was
 30 inches deep
- 90% of total flow is through the wetland complex

Pollutant	Bioretention Facility		Wetland
	East	West	Complex
Fecal Coliform			
TSS			
Turbidity			
Conductivity			

• System reduced total suspended solids (TSS) loads

Dollutont	Bioretention Facility		Wetland
Pollutant	East	West	Complex
Zinc, total			
Zinc, dissolved			
Copper, total			
Copper, dissolved			
Lead, total			
Lead, dissolved		NC	
Cadmium, total	NC	NC	
Cadmium, dissolved	NC	NC	NC

- <u>Mixed results</u>, but complicated by low influent concentrations in bioretention facilities
- System reduced loads of total metals
- System source of dissolved metals

Pollutant	Bioretention Facility		Wetland
	East	West	Complex
Total PAHs			
Total PCBs			

• System reduced loads of PAHs and PCBs

Pollutant	Bioretention Facility		Wetland
	East	West	Complex
Total Phosphorus			
Orthophosphate P			
Total Nitrogen			
Nitrate + Nitrite N			
Ammonia N			

- Bioretention facilities: large source of N & P (~80% of total phosphorus load)
- Overall system is a source of all nutrients except ammonia

Study Conclusions

- Overall, effectiveness determined by wetland complex (90% of flow)
- Bioretention facilities are large sources of phosphorus and nitrogen (these should not be built as is in basins with nutrient concerns)
- Pre- and post-retrofit data indicate treatment improved

Lessons Learned

- Flow monitoring is very challenging.
- Anticipate delays.
- Groundwater may complicate matters.

- Some questions may be answered with cheap(er) continuous data.
- Urban basins are subject to change.

Questions?

kate.macneale@kingcounty.gov

Example: Storm #10 East bioretention facility

Effectiveness Study

0 3ÅM 3ÅM 7 Tue 6AM 9AM 3PM 6PM 9PM 8 Wed 6AM 9AM 12PM 3PM 12PM Mar 2017 3/6/2017 9:00:00 PM - 3/8/2017 5:00:00 PM