The effects of mulch on stormwater treatment and maintenance effort in bioretention systems

Ani Jayakaran, PhD PE – WSU, Washington Stormwater Center
Linda Chalker-Scott, PhD – WSU, Urban Horticulture
February 9th, 2022
Questions

1. What are the water quality treatment benefits associated with three types of mulch?

2. Do certain mulches improve flow control?

3. Do certain types of mulch minimize maintenance effort (hours weeding etc.)?

1. Nugget bark mulch
2. Medium (fir) bark mulch
3. Arborist chips
Approach

• 16 bioretention cells – ALL 60:40 mix and planted
• 3 mulch types: replicated 4 times, 4 cells no-mulch control
• ONE plant palette across 16 cells
• Dosed artificial storms - measured inflow, outflow, & WQ
• Performance by pollutant removal rates (Dis. Cu, Dis. Zn, Total P, TSS, TPH, DOC)
• Measured maintenance effort (mulched vs control)
• Measured flow alteration (mulched vs control)
CAR PORT

Cistern stormwater source

Inflow from cistern
Outflow

Sampling stations

Treatments
N = Nuggets
A = Arborist chips
M = Medium bark mulch
C = Control (no mulch)

Influent sampling
Synthetic Storm Events

Storm size (inches)

- Mar-20: 0.2
- Apr-20: 0.8
- May-20: 1.0
- Jun-20: 0.4
- Jul-20: 0.2
- Aug-20: 0.6
- Sep-20: 0.5
- Oct-20: 0.0
- Nov-20: 0.0
- Dec-20: 0.0
- Jan-21: 0.0
- Feb-21: 0.0
- Mar-21: 0.0
- Apr-21: 0.0
- May-21: 0.0
- Jun-21: 0.0
- Jul-21: 0.0
- Aug-21: 0.0
- Sep-21: 0.0
Results

Weeding Time (total hours)

- Nuggets: 30:40:00
- Medium Bark: 38:55:00
- Arborist Chips: 40:25:00
- Control: 67:35:00
Weeding times

<table>
<thead>
<tr>
<th></th>
<th>Total per cell over 20 months (hrs.)</th>
<th>Ave. area weeded per cell (ft²)</th>
<th>Effort per cell (min./ft²/yr.)</th>
<th>Percent less than controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>16.9</td>
<td>104.3</td>
<td>5.8</td>
<td>0%</td>
</tr>
<tr>
<td>Medium Bark</td>
<td>9.7</td>
<td>109.4</td>
<td>3.2</td>
<td>45%</td>
</tr>
<tr>
<td>Arborist</td>
<td>10.1</td>
<td>126.2</td>
<td>2.9</td>
<td>51%</td>
</tr>
<tr>
<td>Nuggets</td>
<td>7.7</td>
<td>114.3</td>
<td>2.4</td>
<td>59%</td>
</tr>
</tbody>
</table>
Weed Counts

Weed Count (total over study)

- Nuggets
- Medium Bark
- Arborist chips
- Control

- Woody
- Perennial
- Biennial
- Annual
Shade Effects
Soil Moisture - effluent
Summary

• Mulch is a critical component in reducing weeding effort. Doubling of weeding time needed with no mulch.

• All three mulches performed similarly for weed suppression, with nuggets performing marginally better than medium bark and arborist chips.

• Mulch plays a critical role in preserving soil moisture in bioretention cells. Arborist chips had the greatest ability to maintain soil moisture.

• Couldn't distinguish water quality effects of just mulch.

• Nitrite-Nitrate (N-N) concentrations in bioretention effluent were generally lower in the presence of mulch compared to the no-mulch controls.
Thank you!

• Technicians: Carly Thompson, Brandon Boyd, Julie Gentzel, Susan Stuart – data collection, sensor maintenance, preliminary data analyses

• Graduate student: Chelsea Mitchell – data analyses

• Coordination and oversight – Brandi Lubliner, SAM Ecology
Questions?