Stormwater Action Monitoring (SAM) is

Collaborative
Regional
Funded
• By permittees in Western Washington: 91 cities, towns, counties; 2 ports; WSDOT
• In-kind from Ecology, WSDA, USGS, Redmond, Penn Cove Shellfish, Cedar Grove, hundreds of mussel monitoring volunteers

SAM’s goal
• To improve stormwater management, reduce pollution, improve water quality, and reduce flooding by measuring stormwater impacts on the environment and evaluating the effectiveness of stormwater management actions
Today’s agenda

• Permit context for monitoring
• First round of effectiveness studies
• Receiving water monitoring
• Project management and administration
• Source identification
• What’s ahead
SAM Symposium Agenda

June 1, 2017

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 am</td>
<td>Registration, coffee and networking</td>
</tr>
<tr>
<td>9 am</td>
<td>Opening & welcome
Dana de Leon; Stormwater WorkGroup Chair, Tacoma</td>
</tr>
<tr>
<td></td>
<td>Agenda and housekeeping
Brandi Lubliner, Ecology</td>
</tr>
<tr>
<td></td>
<td>Context: Permit monitoring
Bill Moore, Ecology</td>
</tr>
<tr>
<td>9:25 am</td>
<td>Effectiveness studies</td>
</tr>
<tr>
<td></td>
<td>Context for bioretention
Brandi Lubliner, Ecology</td>
</tr>
<tr>
<td></td>
<td>Soil media: Toxicity reduction
Jay Davis; USFWS
Jen McIntyre, WSU</td>
</tr>
<tr>
<td></td>
<td>Soil media: Fungi and PCBs
Alex Taylor, WSU
Jen McIntyre, WSU
Richard Jack, King County</td>
</tr>
<tr>
<td></td>
<td>Hydrologic performance
Bill Taylor, Taylor Aquatic Science</td>
</tr>
<tr>
<td>10:30 am</td>
<td>Break</td>
</tr>
<tr>
<td>10:45 am</td>
<td>Effectiveness studies</td>
</tr>
<tr>
<td></td>
<td>Context for other studies
Brandi Lubliner, Ecology</td>
</tr>
<tr>
<td></td>
<td>Rain garden eval protocol
Aaron Clark, Stewardship Partners
Joy Rodriguez, Puyallup</td>
</tr>
<tr>
<td></td>
<td>Retrofits: Echo Lake Hwy 99
Carly Greyell, King County</td>
</tr>
<tr>
<td></td>
<td>Retrofits: Hylebos facility
Kate Macneale, King County</td>
</tr>
<tr>
<td></td>
<td>Retrofits: Paired watersheds
Andy Rheaume, Redmond
John Lenth, Herrera Env</td>
</tr>
<tr>
<td></td>
<td>Catch basin O&M
Jenee Colton, King County</td>
</tr>
<tr>
<td></td>
<td>Small Business source control
Greg Vigoren, Lakewood</td>
</tr>
<tr>
<td>11:30 am</td>
<td>Lunch</td>
</tr>
<tr>
<td>Noon</td>
<td>SAM administration: How SAM works + study selection
Brandi Lubliner, Ecology</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>Receiving water monitoring</td>
</tr>
<tr>
<td></td>
<td>Context for status/trends
Brandi Lubliner, Ecology</td>
</tr>
<tr>
<td></td>
<td>Streams
Curtis DeGasperi, King County
Rich Sheibley, USGS</td>
</tr>
<tr>
<td></td>
<td>Nearshore mussels
Jennifer Lanksbury, WDFW</td>
</tr>
<tr>
<td></td>
<td>Nearshore sediment
Bob Black, USGS</td>
</tr>
<tr>
<td>1 pm</td>
<td>Break</td>
</tr>
<tr>
<td>1:15 pm</td>
<td>Receiving water monitoring: Nearshore bacteria
Debby Sargent, Ecology</td>
</tr>
<tr>
<td>1:30 pm</td>
<td>Source identification: Context and IDDE findings
Karen Dinicola, Ecology
Greg Vigoren, Lakewood</td>
</tr>
<tr>
<td>1:45 pm</td>
<td>Closing: What’s ahead
Brandi Lubliner, Ecology
Dana de Leon, Tacoma</td>
</tr>
<tr>
<td>2 pm</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>
Municipal Stormwater Permit Monitoring

Bill Moore, Water Quality Program PDS section manager
Washington State Department of Ecology
Meaningful feedback

- Municipal permittees spend >$250 million per year managing stormwater
 - Is it working?
 - SAM represents about 1% investment for monitoring
Why this approach?

• Outfall monitoring is hard and expensive
• Permittees wanted a different approach
 • Pooled resources for economy of scale
 • Collaboration with existing programs
 • Pay-in equals permit compliance
• Stakeholders set the priorities
• Projects are regionally relevant
• Flexibility outside permit requirements
Collaborative approach

• Stormwater Work Group (SWG)
 • Started 10 years ago
 • Formal stakeholder representation
 • Makes specific recommendations
 • For the permits
 • For SAM projects
 • Many subgroups providing input
2010 Scientific Framework

<table>
<thead>
<tr>
<th>Status and trends</th>
<th>Effectiveness studies</th>
<th>Source identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Are conditions in streams and nearshore areas getting better or worse?</td>
<td>• How well are management approaches working?</td>
<td>• Share results and identify regional solutions</td>
</tr>
</tbody>
</table>

[Image of a mosquito and a river]

[Image of workers fixing a pipe]

[Image of a car with the text Don’t Drip & Drive]
SWG recommended we implement SAM via the permits, and require all permittees to pay

SWG investigated more than 40 options and decided Ecology should administer SAM for the first permit cycle because of:

- Capacity & contracting experience
- Relatively low overhead
- No viable alternative
Governance and decision making

• SWG sets the budget and selects the projects
• Ecology writes the permits and manages the program
 • SAM Coordinator is on Ecology staff
 • SAM contracts are with Ecology
 • Private-local account protects the funds
• Oversight committee provides transparency and accountability
 • Approve Ecology’s contracting decisions
 • Evaluate Ecology’s overall performance
What’s ahead for SAM?

- Will carry on through the next permit
 - Very similar set of S8 requirements
- Stakeholders continue to set priorities
- Learning from the launch process
- Applying findings from first round projects
SAM: Western Washington’s Regional Stormwater Monitoring Program

Brandi Lubliner, SAM Coordinator
Washington State Department of Ecology
SAM’s three focus areas

1. **How well are stormwater management practices working?**
 SAM effectiveness studies answer why or why not, and under what conditions.

2. **What are the most common types of pollution in stormwater?**
 SAM source identification projects identify the most common problems and propose regional actions.

3. **How do we know if water quality is getting better or worse?**
 SAM receiving water monitoring evaluates conditions in the water bodies that we are trying to protect. No other monitoring in the state gives feedback on permitted areas.
Context for SAM effectiveness studies

Brandi Lubliner, SAM Coordinator
Washington State Department of Ecology
Context for effectiveness studies

• SWG determined topics & questions
 • Source Control
 • Temporary erosion control
 • Businesses inspections
 • O&M
 • Pollution Prevention
 • Low Impact Development
 • Benefits to receiving waters
 • Long term performance
 • BMP Retrofits
Bioretention (LID) effectiveness studies

• Soil medium performance
• Soil medium amendments
• Facility performance
Bioretention Soil Mix Toxicity Reduction Study

USFWS (Jay Davis) / WSU (Jen McIntyre) / NOAA (David Baldwin)
Study Question

• Is the standard 60:40 (sand:compost) bioretention mix effective for preventing impacts of urban runoff from multiple storms to coho salmon at different life history stages?

 • Adult coho salmon

 • Coho salmon embryos
Adult Coho Tests

• Bioretention treatment prevented toxicity from road runoff in a single test with juvenile coho, mayfly nymphs, daphnia (McIntyre et al. 2014; 2015)

• Could bioretention treatment prevent toxicity from road runoff to adult coho salmon spawners?
Adult Coho Tests

2013

2014

stormwater collection

cumulative rainfall

daily rainfall

Cumulative Rainfall (cm)

Daily Rainfall (cm)
Adult Coho Tests

- Could bioretention treatment prevent toxicity from road runoff to adult coho salmon spawners?

<table>
<thead>
<tr>
<th>Study Year</th>
<th>Test Date</th>
<th>Exposure (hours)</th>
<th>Control Water</th>
<th>Untreated Runoff</th>
<th>Treated Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Nov 8</td>
<td>4</td>
<td>100% Live</td>
<td>50% Dead; 50% Sick</td>
<td>100% Live</td>
</tr>
<tr>
<td>2013</td>
<td>Nov 18</td>
<td>24</td>
<td>100% Live</td>
<td>100% Dead</td>
<td>100% Live</td>
</tr>
<tr>
<td>2014</td>
<td>Oct 20</td>
<td>24</td>
<td>100% Live</td>
<td>100% Dead</td>
<td>100% Live</td>
</tr>
<tr>
<td>2014</td>
<td>Oct 22</td>
<td>24</td>
<td>100% Live</td>
<td>100% Dead</td>
<td>100% Live</td>
</tr>
<tr>
<td>2014</td>
<td>Oct 27</td>
<td>24</td>
<td>100% Live</td>
<td>100% Dead</td>
<td>100% Live</td>
</tr>
</tbody>
</table>
Adult Coho Tests
Adult Coho Tests

Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts

Julann A. Spromberg¹, David H. Baldwin², Steven E. Damm³, Jenifer K. McIntyre⁴, Michael Huff⁵, Catherine A. Sloan², Berndita F. Anulacion², Jay W. Davis³ and Nathaniel L. Scholz²

¹Ocean Associates, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112, USA; ²Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112, USA; ³U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, 510 Desmond Dr. S.E., Lacey, WA 98503, USA; ⁴Puyallup Research and Extension Center, Washington State University, 2606 W. Pioneer Ave., Puyallup, WA 98371, USA; and ⁵Suquamish Tribe, PO Box 498, 18490, Suquamish Way, Suquamish, WA 98392, USA

Summary

1. Adult coho salmon Oncorhynchus kisutch return each autumn to freshwater spawning
Coho Embryo Tests

• Bioretention treatment prevented toxicity from road runoff:
 • In a single test with juvenile coho, mayfly nymphs, daphnia (McIntyre et al. 2014; 2015)
 • In 3 consecutive tests with adult coho salmon spawners (RSMP Task 3.1)

• Could bioretention treatment prevent toxicity from road runoff in coho salmon embryos exposed episodically during development? (RSMP Task 3.2)
Coho Embryo Tests

Imaged 10 embryos
- x 3 cups
- x 4-5 treatments
- x 7 dates

Individual Metrics for:
- Survival
- Length
- Eye Area
- Development
- Cardiovascular abnormalities
Coho Embryo Tests

Nov 2014-Jan 2015 (RSMP): Well water, R10, R50, R100, F100
• 7 storms during 53-day development
• Sampled 7 dates during development
• Runoff impacted embryo size, eye area, and survival

Nov 2015-Jan 2016 (EPA Region 10): Well water, R50, R100, F100
• 15 storms during 64-day development
• Similar results in Year 2
Coho Embryo Tests: Sublethal

- Runoff induced *cyp1a* (PAH detox) on nearly all sampling dates
- Highest on Day 43, concurrent with exposure

- Runoff induced *nppb* (cardiac stress) only on Day 43
- Concurrent with highest *cyp1a* induction
Coho Embryo Tests: Sublethal

- Bioretention treatment prevented \textit{cyp1a} induction on most sampling days
- Day 50: mobilization of inducers from Day 43

- Cardiac stress in F100 on two dates (43, 50)
- Chemicals that induce \textit{nppb} may not be same as those that induce \textit{cyp1a}
Coho Embryo Tests: Sublethal

Embryo eye areas were typically smaller for both untreated and treated runoff.

Cumulative impact on embryo length for untreated runoff only.
Coho Embryo Tests: Survival

Bioretention filtration prevented mortality
Survival high until hatching
Mortality high after hatch
Bioretention filtration prevented most embryo mortality
Chemical Performance of Bioretention: Zn

Monitoring performance: Look for breakthrough over time
Chemical Performance of Bioretention

Copper in effluent decreased across treatment years

Neuroprotective DOC also decreased across treatment years
Chemical Performance of Bioretention

Watch for downward trend in DOC:dCu over time

57% of influents were neurotoxic; All effluents were neuroprotective
Summary

• The standard 60:40 (sand:compost) bioretention mix is effective for preventing impacts of urban runoff from multiple storms to coho salmon at different life history stages:

 • Adult coho salmon (Yes, 3 successive storm events)

 • Coho salmon embryos (Yes, 28 successive storm events)

• No apparent loss of chemical performance after repeated treatment of highway runoff through bioretention (28 discrete events)
Take Home

• The standard 60:40 (sand:compost) bioretention mix is biologically effective across numerous storms

• Installing green infrastructure with bioretention treatment cleans urban stormwater runoff sufficiently to help protect sensitive life history stages of iconic salmon species
Field Test of Plants and Fungi on Bioretention Performance Over Time & Bioretention Capture Efficacy of PCBs from Stormwater
What soil amendment and bioretention soil mixes combined with plant selection combines optimum removal of nutrients, bacteria, and metals?
- Cultivated plants and fungi as biological amendments to 60/40 Bioretention soil mix

A toxicity monitoring component of the research will also evaluate the subtopic:

Where and when are nutrient and metal outputs from LID of concern?

Hypotheses:
- Plant and fungal amendment will increase nutrient and metal retention
- Fungal amendment will reduce PAHs, bacteria, and toxicity of effluent
- Plant amendment will prevent loss of hydraulic conductivity
• Proportion sand and compost into 30 kg bags according to volume (3 buckets sand : 2 buckets compost)

• Weigh each bucket, mix bag, collect moisture sample

• Calculate dry mass per bag for all 90 soil bags

• Fill barrels with select bags to standardize according to dry mass

Standardize soil mass across drums

total dry mass (145 ± 2.8 kg)
Bulk density (1.41 ± 0.04 g/cc)

Compaction to appropriate density

Standard mass
Standard volume = Standard density

Bulk density (1.41 ± 0.04 g/cc)
Standardize hydraulic conductivity across drums

Saturated Hydraulic Conductivity vs. Bulk Density

Bench Scale

Saturated Hydraulic Conductivity

Bioretention Column number

Saturated Hydraulic Conductivity (45 ± 17 cm/hr)
<table>
<thead>
<tr>
<th>Bottle</th>
<th>Water Parameter</th>
<th>Method</th>
<th>Sample Size</th>
<th>Cont.</th>
<th>Holding Time</th>
<th>Preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Metals (Zn, Cu)/Hardness</td>
<td>EPA 200.7</td>
<td>250 mL</td>
<td>HDPE</td>
<td>6 months</td>
<td>HNO3, 6 °C</td>
</tr>
<tr>
<td>2</td>
<td>Dissolved Metals (Zn, Cu)</td>
<td>EPA 200.8</td>
<td>250 mL</td>
<td>HDPE</td>
<td>6 months</td>
<td>Filter, HNO3, 6 °C</td>
</tr>
<tr>
<td>3</td>
<td>Total Suspended Solids</td>
<td>SM2540D</td>
<td>500 mL</td>
<td>HDPE</td>
<td>7 days</td>
<td>6 °C</td>
</tr>
<tr>
<td>4</td>
<td>Total Organic Carbon</td>
<td>SM5310B</td>
<td>40 mL</td>
<td>Amber</td>
<td>28 days</td>
<td>H2SO4, 6 °C</td>
</tr>
<tr>
<td></td>
<td>Dissol. Organic Carbon</td>
<td>SM5310B</td>
<td>40 mL</td>
<td>Amber</td>
<td>28 days</td>
<td>H2SO4, 6 °C</td>
</tr>
<tr>
<td></td>
<td>Chem. Oxygen Demand</td>
<td>EPA 410.4</td>
<td>150 mL</td>
<td>Amber</td>
<td>28 days</td>
<td>H2SO4, 6 °C</td>
</tr>
<tr>
<td>5</td>
<td>Total Phosphorous</td>
<td>SM4500-PE</td>
<td>250 mL</td>
<td>HDPE</td>
<td>28 days</td>
<td>H2SO4, 6 °C</td>
</tr>
<tr>
<td></td>
<td>TKN</td>
<td>SM4500-Norg</td>
<td>250 mL</td>
<td>HDPE</td>
<td>28 days</td>
<td>H2SO4, 6 °C</td>
</tr>
<tr>
<td></td>
<td>Ammonia</td>
<td>EPA 350.1M</td>
<td>250 mL</td>
<td>HDPE</td>
<td>28 days</td>
<td>H2SO4, 6 °C</td>
</tr>
<tr>
<td></td>
<td>Nitrate + Nitrite</td>
<td>EPA 353.2</td>
<td>250 mL</td>
<td>HDPE</td>
<td>28 days</td>
<td>H2SO4, 6 °C</td>
</tr>
<tr>
<td>6</td>
<td>Ortho-phosphorous</td>
<td>SM4500-PE</td>
<td>50 mL</td>
<td>HDPE</td>
<td>48 hours</td>
<td>6 °C</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SM4500HB</td>
<td>250 mL</td>
<td>HDPE</td>
<td>8 hours</td>
<td>6 °C</td>
</tr>
<tr>
<td>7</td>
<td>Alkalinity</td>
<td>SM2320B</td>
<td>250 mL</td>
<td>HDPE</td>
<td>14 days</td>
<td>No head-space, 6 °C</td>
</tr>
<tr>
<td>8</td>
<td>Fecal Coliform</td>
<td>SM9222D</td>
<td>125 mL</td>
<td>Corning</td>
<td>8 hours</td>
<td>Sodium thiosulfate, 6 °C</td>
</tr>
<tr>
<td>9</td>
<td>E. coli</td>
<td>SM9222D</td>
<td>125 mL</td>
<td>Corning</td>
<td>8 hours</td>
<td>Sodium thiosulfate, 6 °C</td>
</tr>
<tr>
<td>10</td>
<td>PAHs</td>
<td>EP 8270D-SIM</td>
<td>500 mL</td>
<td>Amber</td>
<td>7 days</td>
<td>6 °C</td>
</tr>
<tr>
<td>11</td>
<td>PCB *</td>
<td>EPA 1668C</td>
<td>1000 mL</td>
<td>Amber</td>
<td>12 mo</td>
<td>6 °C</td>
</tr>
<tr>
<td>12</td>
<td>D. rerio acute toxicity</td>
<td>McIntyre 2014</td>
<td>450 mL</td>
<td>Amber</td>
<td>6 months</td>
<td>store at -20 °C</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>5,470 mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Water sample for PCB analysis will be collected by King County personnel (King County, 2016)
<table>
<thead>
<tr>
<th>Influent</th>
<th>+ Plants + Fungi</th>
<th>+ Plants - Fungi</th>
<th>- Plants + Fungi</th>
<th>- Plants - Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 x 8</td>
</tr>
<tr>
<td>12 x 8</td>
</tr>
<tr>
<td>12 x 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 carboys x 12 analyses per carboy x 8 storms</td>
<td>=1,440 analyses over 2 years</td>
</tr>
</tbody>
</table>

many more total analytes than that (metals suite, PAH suite)
Results

- Field site built and soil variables controlled to maximum practical extent
- 1 of 8 sampling events completed
- First year report March 2018
- Final report June 2019
Impact

- Plants are expensive. Do they add functional value to bioretention installations?
- Can adding fungi to the mulch layer improve nutrient retention or pollutant removal?
- Improved soil hydraulic property data to understand lifespan, infiltration, clogging, and infiltration
- Do water quality concerns about 60/40 bioretention leachate/effluent have toxicological significance?
Bioretention Capture Efficacy of PCBs from Stormwater

Mesocosm Study Part 2
PCB Behavior

• Banned in 1977 but remain in many existing in-use materials
 • Soils, sediments, caulks, paints
• 209 different forms called congeners
• Semi-volatile
 • Evaporate and condense according to humidity, temp, surface, material type and congener
• Attracted to organic carbon, dislike being dissolved in water
 • Fish! Almost all WA state consumption advisories are for PCBs
 • Oily surfaces, particulates (tires, dust)
 • Soils & sediments
Study Questions

• What is the PCB removal (capture) rate in BSM, and does it vary by congener? (within one storm)

• What is the wet season PCB sequestration (retention over multiple storm events) in BSM, and does this vary by congener?
 • Compare sequestered mass of PCBs with estimated stormwater loads.

• What is the PCB retention in BSM during the dry season, and does it vary by congener?
Mesocosm scale study
Data collected

• Using “Soil Only” and “Soil Plus Plants” mesocosms only

• Quarterly soil samples
• Quarterly storm samples
• Analysis for all 209 PCB congeners
• TOC, DOC, TSS

• Flow
Why do we care?

• Raise awareness about the need to validate stormwater management technologies for PCBs in general
 • New water quality standards are 0.000000007 mg/L (parts per trillion)
 • Achieving this is currently impossible, requires widespread source removal
 • Every little bit (permanently) sequestered helps

• If year over year PCB capture remains high, at what point might bioretention facilities become dangerous waste?

• If year over year PCB capture is not as high as per storm capture, will bioretention be effective at interrupting urban cycling of PCBs before they reach waterbodies?
Bioretention Hydrologic Performance Study

Bill Taylor, Taylor Aquatic Science
Doug Beyerlein, PE, Clear Creek Solutions, Inc.
Jenny Saltonstall, Associated Earth Sciences
Bryan Berkompas, Aspect Consulting
Anne Cline, Chris Wright, Raedeke Associates, Inc.
Study Question to Answer

• How well do actual constructed bioretention facilities’ hydrology performance match the design models’ results?

• What site conditions may be affecting any differences observed between actual performance and model performance?
Ten
Selected
Site
Locations

Wide
Range of
Subsurface
Conditions
Performance Monitoring Components

- Facility dimensions and contributing areas
- Bioretention soil and subsurface composition; infiltration tests
- Hydrology – rainfall, inflow, outflow, ponding, and groundwater
- Vegetation – herbaceous and shrub composition
Analyze All the Component Data for Design Improvements
Initial Findings – Dimensions

• Generally sized to original design size

• Contributing areas to be further assessed for expected runoff volumes
Initial Findings - Hydrologic Response

• 6 months of continuous wet season monitoring (October – March)
• 3 months additional monitoring for drier conditions (April – June)

• Variable response depending on subsurface conditions
 • Evidence of oversizing in highly infiltrating sites
 • Evidence of shallow groundwater mounding
 • Evidence of possible lateral subsurface flow
 • Evidence of subsurface leakage to an overflow outlet
 • Evidence of short circuiting through soil directly to underdrain; almost no detention, reduced treatment
• Ponding at the inlet
• No ponding at the outlet
• Infiltrating in upstream area

• Small outflow occurring suggesting bypass leakage to overflow structure
• Two Cells Adjacent to Each other:
 • No ponding with subsurface groundwater receding
 • Ponding with continuous elevated groundwater and outflow
No ponding Ponding
Initial Findings – HydroGeo and Geotechnical

• Sites covered a wide range of geotechnical and infiltration conditions

• Bioretention soil texture generally coarser than guidelines

• Variable infiltration rate performance

• Little site specific hydro-geo data; analysis “borrowed” from adjacent infrastructure testing
• PRELIMINARY FINDINGS – HYDROGEOLOGIC SETTINGS

Geomorphic and Hydrogeologic Setting

- Glaciated Upland – 4 cells
 - 1 in advance outwash, deep ground water
 - 2 in weathered till, perched ground water
 - 1 in unweathered till, but with underdrain

- Outwash Plain – 5 cells
 - 2 in gravel, deep ground water
 - 2 in sand, moderate ground water
 - 1 in gravel, shallow ground water

- Alluvial Valley – 1 cell, recent alluvium, shallow ground water

Flow Control Performance Relative to Design?

- ✓ Yes, high performing outwash
- ? – Uncertain, lateral flow
- ? – Unlikely, short circuiting to underdrain, no retention
- ✓ Yes, high performing outwash
- ✓ Yes, high performing outwash
- ✓ Yes, high performing outwash
- ? – Uncertain, shallow ground water mounding influence
Bioretention Soil Characteristics

<table>
<thead>
<tr>
<th>Ecology 2014 / Site</th>
<th>Average Grain Size, % Passing</th>
<th>Coefficient of Uniformity (Cu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% OM</td>
<td>#200</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>B145</td>
<td>5 to 8</td>
<td>2 - 5</td>
</tr>
<tr>
<td>BBD</td>
<td>5.3</td>
<td>0.7</td>
</tr>
<tr>
<td>IHS#24</td>
<td>5.8</td>
<td>5.0</td>
</tr>
<tr>
<td>MCCA1</td>
<td>4.2</td>
<td>0.3</td>
</tr>
<tr>
<td>MCCA2</td>
<td>5.1</td>
<td>1.2</td>
</tr>
<tr>
<td>NOL</td>
<td>3.6</td>
<td>0.6</td>
</tr>
<tr>
<td>ORLA1B</td>
<td>6.2</td>
<td>2.5</td>
</tr>
<tr>
<td>ORLA2B</td>
<td>4.2</td>
<td>2.5</td>
</tr>
<tr>
<td>SLP I</td>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>SLP J</td>
<td>2.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Out of Spec

![Recommended Grain Size Envelope](image_url)

Note: The table above shows the average grain size percentages for different bioretention sites, along with the coefficient of uniformity (Cu). The recommended grain size envelope is indicated on the graph, which helps in distinguishing between coarse, medium, and fine sand and silt or clay.
Initial Findings - Vegetation

• Shrub species surviving well
• Herbaceous species less adaptable – depends on irrigation and species selected
• Selecting fewer successful species from will lead to greater survival and reduced cost with replanting
WWHM2012
Bioretention Element

Evapotranspiration | Rain
Surface Runoff

Surface ponding

Infiltration through top layer
Infiltration through second layer
Infiltration through third layer

Infiltration to native soil

Underdrain Flow
Initial Findings – Design Modeling

• Wide variety of computer models used for design

• Approach to modeling was often not set up properly

• Final success of the facilities was more due to oversizing facilities for 100% infiltration, masking design errors or incorrect assumptions
Use of this Information to Improve Stormwater Management

• This Performance Analysis Suggests Design Guidance for Site Plan Review and Construction Inspection

 • Confirm site dimensions and inflow and overflow structures are at proper elevations
 • Use site-specific hydro-geotechnical analysis for infiltration rates
 • Select plant species that have proven to survive and remain
 • Use current modeling methods that properly represent infiltration
WHAT’S NEXT

- Monitoring is ongoing through June 2017

- Calculate volume reductions across multiple storms

- Compare field tested infiltration rates to variable infiltration performance from monitoring

- Compare reduction in infiltration rates due to ground water mounding

- Clear Creek Solutions will compare design model flow control to actual flow control using WWHM2012

- Report due late 2017
Context for SAM effectiveness studies

Brandi Lubliner, SAM Coordinator
Washington State Department of Ecology
Other effectiveness studies

• Rain gardens
• Retrofits (3)
• Operation and maintenance
• Business inspection source control
Bioretention and Rain Garden Protocol Development

Joy Rodriguez, EIT – City of Puyallup
Bob Simmons, Chrys Bertolotto – WSU Extension
Philomena Kedziorski, Erica Guttman – WSU Extension

Aaron Clark – Stewardship Partners
Ani Jayakaran, PhD PE – WSU, Washington Stormwater Center

SAM
Stormwater Action Monitoring
Project Purpose

Develop a rain garden and bioretention assessment protocol to monitor basic functions of rain gardens and bioretention facilities.

- Assess factors influencing their success and failure.

- Protocol is being developed to allow for:
 - Ease of implementation
 - Repeatability across large geographic scales
 - Consistent data from multiple implementers
 - Provide data of scientific and adaptive management value.
Findings to date

Literature Review:

- A protocol like this does not currently exist

- There is little consensus on what metrics define effectiveness of rain gardens and bioretention

- Metrics that were shown to have strong relationships to function were compiled and assessed for feasibility and value in this protocol

- Social science research provides some key elements that are linked to public valuation of rain gardens and bioretention
 → Perceived value to the community best assessed through a separate protocol to be implemented at the same sites as the assessment protocol.
Findings to date

• Protocol DRAFT v1.0 –
 • Large # of metrics identified for testing
 • Hydrology metrics: inflow, outflow, overflow, soil conditions
 • Vegetation metrics: diversity, health and extent of any invasive species
 • Community metrics: some factors known to influence community perceptions of value, so those are included.
Training

• 35 Volunteers were trained via 1-day trainings in three counties: Snohomish, Thurston and Jefferson.

• Volunteers, working in teams of 2-3 assessed 14 sites, with each site repeated by a different team of volunteers to assess repeatability.
Findings to date

• Pilot round of data:
 • Protocol v1.0 was implemented successfully by volunteers
 • Determined which information was valuable, removed some of the metrics
 • Volunteer feedback is improving the data collection methodology for protocol v.2.0

• When the same facility was assessed by 2 different volunteer teams, the results across most variables was highly consistent.

• Volunteer and Technical Advisory Committee input provided guidance for changes for the protocol v2.0
Value of Protocol

• Consistent data from multiple implementers
 • Within jurisdictions and between jurisdictions

• Provide data of scientific and adaptive management value

• Improve community acceptance, improve voluntary maintenance and increase installation
Timeline

• Protocol v2.0 is ready now
• Training v2.0 scheduled for July: 4 counties: Snohomish, Pierce, Thurston, Jefferson
• Assessment of 40 sites/facilities - August-September 2017
• Analysis of 2nd round data and submission of results - November 2017
• Community valuation survey completed/assessed - November 2017
• Online training module - March 2018
• Final version of protocol - March 2018
Stormwater Retrofits for Treating Highway Runoff

Carly Greyell
King County Water and Land Resources Division
How well a retrofit improved water quality in a typical urban basin:

1. Individual BMPs
2. Larger stormwater system
3. Receiving water
3 Bioretention Planter Boxes
1 Filterra
<table>
<thead>
<tr>
<th></th>
<th>![Diagram]</th>
<th>![Diagram]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended Solids</td>
<td>![Check]</td>
<td>![check]</td>
</tr>
<tr>
<td>Dissolved Zinc</td>
<td>![Check]</td>
<td>![Cross]</td>
</tr>
<tr>
<td>Dissolved Copper</td>
<td>![Question]</td>
<td>![Cross]</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>![Cross]</td>
<td>![Question]</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons</td>
<td>![Check]</td>
<td>![Check]</td>
</tr>
</tbody>
</table>

Virtually Eliminated!
<table>
<thead>
<tr>
<th>Substance</th>
<th>Green Checkmark</th>
<th>Red Crossmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended Solids</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Dissolved Zinc</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Dissolved Copper</td>
<td>?</td>
<td>✗</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>Petroleum Hydrocarbons</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
Unexpected Maintenance Issues
Bioretention can treat your stormwater...
...but only if the stormwater can get in.
Acknowledgements

• Brandi Lubliner – Ecology RSMP/SAM Coordinator
• Fred Bergdolt – Project Liaison (WSDOT)
• KC Environmental Lab – Sampling & Analysis
• Pacific Rim Laboratories – PCB Analysis
• City of Shoreline – Site and Logistical Support
• Jenée Colton – Technical and Study Design Support
Federal Way S. 356$^{\text{th}}$ Street Project: Effectiveness of Retrofit and Expansion

Kate Macneale, King County Water and Land Resources with
Fei Tang and Theresa Thurlow, City of Federal Way
King County Environmental Laboratory
Did retrofit and expansion improve flow control and treatment?
S. 356th Street Detention Facility

- Built in 1997 to treat runoff from 189-acre basin
 - combined detention and stormwater treatment wetland (“wetland”)
- Expanded in 2014
- In-series “wetland” to increase treatment
- 2 bioretention facilities to treat runoff from 22-acre basin that hadn’t been treated previously
New “wetland”

- Increase capacity
- Unlined, but infiltration limited
New “wetland”

- Increase capacity
- Unlined, but infiltration limited

Bioretention facilities

- New capacity
- Underdrained
 - East: drains quickly
 - West: drains slowly
Untreated
• East bioretention facility
• West bioretention facility
• Wetland complex

Treated
In

Out
Receiving waters:
North Fork West Hylebos Creek
Sampling Complete

• Flow at 7 locations
• 18 storms sampled for TSS, metals, nutrients, PAHs
• 10 storms for PCBs, fecal coliforms
• 5 storms for toxicity
• Pre- and post-retrofit turbidity data
Example: Storm #10 East bioretention facility

Rain = 0.78 inches
Example: Storm #10 East bioretention facility

inflow = 12200 cubic feet
outflow = 8300 cubic feet
Rain = 0.78 inches

PRELIMINARY!
Example: Storm #10 East bioretention facility

- inflow = 12200 cubic feet
- outflow = 8300 cubic feet
- Rain = 0.78 inches

PRELIMINARY!
Treatment?
Zinc, dissolved

East

West

µg/L

In Out In Out In Out Creek
Zinc, dissolved

East West Wetlands

µg/L

In Out In Out In Out Creek
Copper, dissolved

East West Wetlands

μg/L

In Out In Out In Out Creek

PRELIMINARY!
Bioretention facilities

- Zinc
- TSS
- PAHs
- Hardness
- DOC
- Toxicity

- Bacteria

- Copper
- Lead

- Nutrients

PRELIMINARY!
Take home messages

• Bioretention facilities
 • provided flow control and treatment
 • sources of nutrients, some metals
 • short retention times (east bioretention) sufficient for treatment

• Wetland complex
 • Still analyzing net and relative effect

• Final report completed by end of 2018
Questions?

kate.macneale@kingcounty.gov
Flow control in West bioretention, but much slower

- West inflow = 21590 cf
- West outflow = 13757 cf
- Rain = 2.35 inches
Metals

Zinc, dissolved

Copper, dissolved

PRELIMINARY!
East West Wetlands

Total N

mg/L

In Out In Out In Out Creek
Paired Watershed Stormwater Retrofit Effectiveness Study

John Lenth – Herrera Environmental Consultants
Andy Rheaume – City of Redmond
June 1st, 2017 SAM Symposium
The Dilemma

Stormwater runoff is a major contributor to aquatic habitat impairment in the Puget Sound watershed
Puget Sound Water Quality

• Surface water runoff during storms was identified as the major delivery pathway for most contaminants to Puget Sound
Puget Sound Salmon
Puget Sound Salmon
The Dilemma

Two more Seattles and two more Tacoma’s by 2040!
The Dilemma

- Washington Municipal Stormwater Permit
 - Tied to new development and redevelopment
 - Treatment designed to improve conditions relative to existing conditions
 - New requirements for LID
 - Does not specifically target areas of ecological importance
Redmond Citywide Watershed Plan
Approved in February 2014

• Goals

• Provide baseline of scientific information evaluating watershed rehabilitation potential

• Prioritize a subset of watersheds with greatest potential to respond to rehabilitation efforts

• Identify specific tools to rehabilitate highest priority watersheds by 2060
Redmond Citywide Watershed Plan

• Watershed Approach:

 1. Identify Priority Watersheds
 Moderate impairment = highest rehabilitation potential

 2. City builds facilities to improve stream hydrology and water quality

 3. Developers in other watersheds pay fee-in-lieu to reimburse City for facility costs
Redmond Citywide Watershed Plan

• Key Provisions:

 • Retain requirements to prevent new impacts from development, regardless of watershed condition or priority

 • Allow for transfer of required flow control or runoff treatment to watersheds where they will provide the greatest benefit
Regional Stormwater Monitoring Program

• Municipal Stormwater Permit established “pooled resource” funding for monitoring
 • Effectiveness of stormwater management program activities
 • Receiving water status and trends
 • Source Identification Repository
Can small urbanized streams that are moderately impacted by stormwater be rehabilitated?
BOOTH, et al. (2002)

PUGET SOUND

“Development that minimizes the damage to aquatic resources cannot rely on structural BMP’s, because there is no evidence that they can mitigate any but the most egregious consequences of urbanization.”
Redmond Paired Watershed Study

Redmond Paired Watershed Study

Project Team

• Project Lead
 • City of Redmond

• Technical Leads for QAPP
 • Herrera Environmental Consultants
 • King County

• Agency Oversight
 • Washington State Department of Ecology

• Steering Committee
 • City of Seattle
 • King County
 • Kitsap County
 • U.S. Environmental Protection Agency
 • U.S. Geological Society
 • Washington State Department of Ecology
Redmond Paired Watershed Study
Experimental Design

• Three “Application” watersheds
 • Moderately impacted by urbanization
 • Prioritized for rehabilitation efforts

• Two “Reference” watersheds
 • Relatively pristine
 • Not subject to rehabilitation efforts

• Two “Control” watersheds
 • Heavily impacted by urbanization
 • Not subject to rehabilitation efforts
Redmond Paired Watershed Study

Experimental Design

<table>
<thead>
<tr>
<th>Watershed Type</th>
<th>Watershed Name</th>
<th>WQ Sites (#)</th>
<th>Physical Habitat Sites (#)</th>
<th>Dominant Land Use/Cover</th>
<th>Watershed Areas (acres)</th>
<th>Watershed Area in Redmond (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Colin</td>
<td>1</td>
<td>1</td>
<td>Forest</td>
<td>1,990</td>
<td>90</td>
</tr>
<tr>
<td>Reference</td>
<td>Seidel</td>
<td>2</td>
<td>3</td>
<td>Forest</td>
<td>1,188</td>
<td>615</td>
</tr>
<tr>
<td>Application</td>
<td>Monticello</td>
<td>3</td>
<td>5</td>
<td>Residential/Commercial</td>
<td>345</td>
<td>264</td>
</tr>
<tr>
<td>Application</td>
<td>Tosh</td>
<td>2</td>
<td>4</td>
<td>Residential/Commercial</td>
<td>299</td>
<td>276</td>
</tr>
<tr>
<td>Application</td>
<td>Evans</td>
<td>2</td>
<td>2</td>
<td>Residential</td>
<td>397</td>
<td>NA</td>
</tr>
<tr>
<td>Control</td>
<td>Tyler’s</td>
<td>3</td>
<td>2</td>
<td>Residential/Commercial</td>
<td>168</td>
<td>167</td>
</tr>
<tr>
<td>Control</td>
<td>Country</td>
<td>2</td>
<td>2</td>
<td>Residential/Commercial</td>
<td>212</td>
<td>212</td>
</tr>
</tbody>
</table>
Redmond Paired Watershed Study

Experimental Design

• Water quality monitoring
 • 12 storm flow events annually
 • 4 base flow events annually
• Habitat monitoring
 • Annually
• Hydrologic modeling
 • Continuous
• Sediment monitoring
 • Annually
• Biological monitoring
 • Annually
Redmond Paired Watershed Study
Experimental Design

• Water Quality
 • Total suspended solids
 • Turbidity
 • Temperature
 • Conductivity
 • Hardness
 • Dissolved organic carbon
 • Fecal coliform bacteria
 • Total phosphorus
 • Total nitrogen
 • Nutrients
 • Copper, total and dissolved
 • Zinc, total and dissolved
Redmond Paired Watershed Study
Experimental Design

• Sediment Quality
 • Total organic carbon
 • Copper
 • Zinc
 • Polycyclic aromatic hydrocarbons (PAHs)
• Phthalates
Redmond Paired Watershed Study
Experimental Design

• Hydrology
 • Continuous Flow
 • Hydrologic metrics
Redmond Paired Watershed Study
Experimental Design

• Biological endpoints
 • Benthic Index of Biotic Integrity
Redmond Paired Watershed Study

Experimental Design

• Physical habitat
 • Longitudinal profile
 • Channel dimensions
 • Substrate embeddedness
 • Fish cover
 • Human influence
 • Riparian shading
 • Riparian vegetative structure
• Large woody debris
• Habitat units
Redmond Paired Watershed Study
Initial Results
Redmond Paired Watershed Study
Initial Results

![Graphs showing total phosphorus levels during base flow and storm events.](image-url)
Redmond Paired Watershed Study
Initial Results
Redmond Paired Watershed Study
Initial Results

• Temperature
Redmond Paired Watershed Study
Initial Results

<table>
<thead>
<tr>
<th>Watershed Type</th>
<th>Watershed Name</th>
<th>Stations</th>
<th>Overall Condition</th>
<th>B-IBI</th>
<th>Total Taxa Richness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Colins</td>
<td>1</td>
<td>Poor</td>
<td>27.9</td>
<td>22</td>
</tr>
<tr>
<td>Reference</td>
<td>Seidel</td>
<td>3</td>
<td>Fair, Good, Fair</td>
<td>56.0, 77.1, 57.6</td>
<td>30, 34, 31</td>
</tr>
<tr>
<td>Application</td>
<td>Monticello</td>
<td>5</td>
<td>Fair, Good, Very Poor, Very Poor</td>
<td>54.3, 65.8, 7.9, 19.7, 39.2</td>
<td>31, 35, 15, 21, 32</td>
</tr>
<tr>
<td>Application</td>
<td>Tosh</td>
<td>4</td>
<td>Fair, Poor, Poor, Poor</td>
<td>41.4, 35.0, 39.5, 22.2</td>
<td>25, 23, 27, 25</td>
</tr>
<tr>
<td>Application</td>
<td>Evans</td>
<td>2</td>
<td>Fair, Good</td>
<td>56.2, 76.0</td>
<td>27, 36</td>
</tr>
<tr>
<td>Control</td>
<td>Tyler’s</td>
<td>2</td>
<td>Poor, Very Poor</td>
<td>25.9, 7.0</td>
<td>22, 12</td>
</tr>
<tr>
<td>Control</td>
<td>Country</td>
<td>2</td>
<td>Very Poor, Fair</td>
<td>9.0, 46.4</td>
<td>12, 31</td>
</tr>
</tbody>
</table>
Questions?

John Lenth
jlenth@herrerainc.com
(206) 787 - 8265

Andy Rheaume
ajrheaume@redmond.gov
(425) 556 – 2741
Western WA Catch Basin I&M Study

Jenée Colton, King County
Diana Hasegan, Osborn Consulting Inc.
How can we use WW catch basin I&M records to inform individual inspection frequency needs?

Photo Credit: WSDOT
Data Compilation Stage

Minimum Data Needed for Analysis

<table>
<thead>
<tr>
<th>CB Info</th>
<th>Inspection Info</th>
<th>Cleaning Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>CB ID</td>
<td>CB ID</td>
</tr>
<tr>
<td>Sump Depth</td>
<td>Date</td>
<td>Date</td>
</tr>
<tr>
<td>Sump Volume</td>
<td>Sediment Depth or % Full</td>
<td></td>
</tr>
</tbody>
</table>
Response Rate
48/127 Answered Survey
31/127 Provided Data

8 Permittees: Most Complete

Spatial Coverage
Preliminary Results

CB Inspection Schedule

- **Std**: 37
- **Alt 1**: 4
- **Alt 2**: 9
- **Alt 3**: 9

CB Definition

- 24, 44%
- 12, 22%
- 9, 17%
- 6, 11%
- 1, 2%
- 2, 4%

Legend:
- >12-IN min sump depth
- >6-IN min sump depth
- >18-IN min sump depth
- Sump
- Unknown
- Other
Project Benefits

• Know range of measurements collected & records kept across WW
• Identify information most helpful for assessing maintenance needs
• Potentially identify factors that help predict cleaning needs
• Propose alternative I&M schedules
• Cost-saving measures
Next step

Data loading and prep – June/July
Acknowledgements

King County – Blair Scott, Mark Preszler, Nick Hetrick, Brent Dhoore, and Doug Navetski

Technical Advisory Committee – Angela Gallardo, Laura Haren, Grant Moen, and Kate Rhoads

Osborn Consulting Inc. – Indulekshmi, Chang Liu, Madison Dreiger, Laura Ruppert

Cardno – Jonathan Ambrose

SAM coordinator – Brandi Lubliner
Stormwater Source Control Effectiveness Study

James Packman

Greg Vigoren

Funding provided by western Washington municipal stormwater permittees
What is Stormwater Source Control

• Prevent or reduce pollutants entering stormwater runoff.
How is Source Control Achieved?

• Best Management Practices (BMPs):

 Definition per SWMMWW (2012): schedules of activities, prohibitions of practices, maintenance procedures, managerial practices, or structural features that prevent or reduce pollutants or other adverse impacts to waters of Washington State.

 • Treatment and Flow Control BMPs
 • Operational BMPs
 • Structural BMPs
Effectiveness Questions

Six source control effectiveness questions identified:

• Primarily about optimum **frequency of inspection** and **BMP effectiveness** at *businesses and on commercial properties*.

• Effectiveness of **combined inspections**? How can coordination of inspections among agencies and departments be improved?

• Focus on **municipal NPDES permit**, but implications for other NPDES permits since they require controlling pollution sources and use same/similar BMPs:
 - Industrial Permit
 - Boatyard Permit
 - Large Port Permits
 - Construction Permit
 - Sand and Gravel Permit
 - WSDOT Permit
Inspections at Businesses and Commercial Properties
Results: Permittee Data

<table>
<thead>
<tr>
<th>Permittee</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle Business_City</td>
<td>1,628</td>
<td>8,112</td>
</tr>
<tr>
<td>Seattle SWF_City</td>
<td>1,304</td>
<td>8,023</td>
</tr>
<tr>
<td>Federal Way_City</td>
<td>1,296</td>
<td></td>
</tr>
<tr>
<td>Lakewood_City</td>
<td>1,058</td>
<td></td>
</tr>
<tr>
<td>Everett SW_dye_City</td>
<td>861</td>
<td></td>
</tr>
<tr>
<td>Vancouver_City</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>Lacey_City</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Shoreline LSC_City</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Battle Ground_City</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Burien_City</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Shoreline Auto_City</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Everett IPT_City</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Auburn_City</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Shoreline Gas_City</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Sedro Wooley_City</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Arlington_City</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port Orchard_City</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Data Request Response

<table>
<thead>
<tr>
<th>Phase</th>
<th>No. Permittees</th>
<th>Data Rec'd</th>
<th>Declined or Unable</th>
<th>No Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Phase II</td>
<td>83</td>
<td>14</td>
<td>7</td>
<td>62</td>
</tr>
</tbody>
</table>
Results:

Ecology LSC Data

<table>
<thead>
<tr>
<th>Permittee</th>
<th>Phase I</th>
<th>Null</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacoma-Pierce County Health Dep.</td>
<td>1,926</td>
<td></td>
</tr>
<tr>
<td>Seattle Public Utilities</td>
<td>1,629</td>
<td></td>
</tr>
<tr>
<td>Snohomish Health District</td>
<td>1,501</td>
<td></td>
</tr>
<tr>
<td>Kitsap Public Health District</td>
<td>1,118</td>
<td></td>
</tr>
<tr>
<td>King County DNRIP</td>
<td>995</td>
<td>897</td>
</tr>
<tr>
<td>Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spokane Regional Health District</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>Bellingham City</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>Skagit County Public Health</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>Kitsap County Public Works</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>Whatcom County Health Department</td>
<td>623</td>
<td></td>
</tr>
<tr>
<td>Redmond City</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>San Juan County</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>Jefferson County Health</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>Issaquah City</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Puyallup City</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Port Angeles City</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Bellevue City</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Bothell City</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Marysville City</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Kirkland City</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Sumner City</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Everett City</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Sedro Woolley City</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Shoreline City</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Port of Seattle</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Clallam County</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>King County Public Health</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Clark County Public Health</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Clark County Public Works</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

DATA AVAILABILITY

<table>
<thead>
<tr>
<th></th>
<th>No. Permittees</th>
<th>Data Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Phase II</td>
<td>83</td>
<td>22</td>
</tr>
</tbody>
</table>
How Are the Results Useful?

Big picture goal: reduce non-point stormwater pollution.

Useful to Permittees
Improve efficiency of inspection programs:
 • Priority and frequency of inspections
 • Standardized data
 • Share information across jurisdictions about what works

Useful to Ecology
Improve regional stormwater management:
 • Refine permit requirements for source control programs
 • Identify common source control issues in the region
 • Serve as model for Eastern WA source control permit requirements
Challenges to Addressing Effectiveness Questions

• Variable implementation of inspection programs = variable data type and quality.
• Inspection data is not standardized across the region.
• Inspection data are organized and stored in multiple formats from hand-written files to advanced databases.
• Data are mostly categorical and qualitative, not quantitative.
• Some effectiveness questions inquire about information not typically collected (e.g. use of required vs. optional BMPs).
• The study is a post-hoc analysis – a look back at existing data. Not a designed experiment to measure the impact of controlled variables.
Current Project Status

Completed

• Data Analysis Plan with study design
• Survey of permittees and data request
• Standardize data and create database (in process)

Coming up

• Summary of metadata
• Data analysis
• Report (summer 2017)
• Information transfer to permittees and others (workshops, conferences)
Questions?

James Packman
jpackman@aspectconsulting.com
206-780-7723
www.aspectconsulting.com

Greg Vigoren
gvigoren@cityoflakewood.us
253-983-7771
www.cityoflakewood.us

Aspect Consulting

City of Lakewood
How does SAM work?

Brandi Lubliner, SAM Coordinator
Washington State Department of Ecology
SAM study selection by Stormwater Work Group

• SWG sets budget and selects the projects
 • Finishing 2nd round effectiveness study solicitation
 • Waiting for science recommendations on future receiving water monitoring to detect stormwater-relevant trends
 • Considering new proposals for source identification studies
SAM program management by Ecology

• Invoice permittees for amounts in S8
• Manage contracts for studies
• Coordinate reviews on deliverables
 • Assistance from project liaisons and TAC’s
• Prepare quarterly and annual reports on income, expenditures, encumbrances
• Provide transparency via web on accounts and studies
SAM checks and reviews by the Pooled Resources Oversight Committee

• PRO-C oversees project management
 • Scope, schedule, budget
 • Approves Ecology’s contracting actions

• PRO-C evaluates Ecology’s performance
 • First review was done last year

• PRO-C meets 4-6 times per year
 • Some decisions by email
Stormwater Work Group (SWG) Recommendations

- Puget Sound Partnership
- Puget Sound Ecosystem Monitoring Program (PSEMP) Steering Committee
- Other Workgroups and Subgroups

SWG’s recommendations are informed by recommendations of other workgroups and subgroups. The SWG’s recommendations may be directed to any agency or stakeholder group with a monitoring implementation or oversight role.

- Ecology MS4 Permits
- Pooled Resources Oversight Committee (PRO-C)

Oversees SAM projects scopes, schedules and budget and provides direction for SAM program management

- Stormwater Action Monitoring (SAM) Program managed by Ecology

Formal stakeholder group

Agency
Context for SAM receiving water monitoring

Brandi Lubliner, SAM Coordinator
Washington State Department of Ecology
Context for receiving water monitoring

- Regional priorities set by SWG:
 - Lowland streams
 - Marine nearshore
 - Water quality
 - Sediment quality
 - Biotic endpoints
Context for regional stream monitoring

• Randomized site design
 • EPA approach limits bias in site selection
 • Puget Sound watershed
 • small lowland ecoregion streams
 • Urban Growth Area (UGA) In/Out
 • Each site represents 1 km
• USGS, King Co, San Juan Island CD, Snohomish Co, Ecy EAP, & 13 labs
Context for regional marine nearshore monitoring

- Puget Sound nearshore sites
 - 40 randomized shoreline sites along UGAs
 - Along Urban Growth Area (UGA)
 - Each site represents 800m
 - Bacteria not sampled – too expensive
 - Existing data compiled and analyzed instead
 - Sediment and mussel sites rarely differed
Puget Lowland Ecoregion Streams Status & Trends

Brandi Lubliner, SAM Coordinator; Rich Sheibley, USGS; Curtis DeGasperi, King County; Chad Larson, Ecology; Leska Fore, Puget Sound Partnership
Study questions:

• **Q1**: What percent of streams meet biological, water, and sediment quality standards for beneficial uses within and outside urban growth areas (UGAs)?

• **Q2 & Q3**: What natural and human variables correlate with the status of streams within and outside the UGA?

• **Q4**: How do SAM results compare to other monitoring programs in Puget Sound?

• **Q5**: What parameters would be carried forward for trend assessment of SAM stream monitoring in the future, and at what timing and frequency?
Sampling design “survey-based”

• Analogous to polling methods
• A complete census is not possible
• Survey-based sampling is efficient
• Survey-based sampling provides confidence bounds on results
Sampled small Puget Lowland Streams within and outside urban growth areas (UGAs) for:

- Monthly water quality Jan-Dec 2015
 - Conventional parameters, metals, PAHs, stream flow
- Summer Watershed Health Monitoring
 - Water quality (conventional parameters)
 - Benthic macroinvertebrates
 - Periphyton
 - Sediment chemistry (TOC, metals, phthalates, PAHs, PCBs, PBDEs, common pesticides)
Included watershed and riparian GIS analysis

• Leveraged USGS NAWQA expertise (and USGS $) to derive land cover and other landscape parameters for all SAM PLES sites and 16 least-disturbed reference sites

• Why? Because local riparian and upstream land cover shown to be important factor for biological communities
Land cover summary within and outside UGAs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Detection Frequency</th>
<th>Parameter</th>
<th>Detection Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>Outside UGA: B</td>
<td>Naphthalene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: B</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Outside UGA: A</td>
<td>Zinc</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: A</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Arsenic dissolved</td>
<td>Outside UGA: A</td>
<td>Zinc dissolved</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Chloride</td>
<td>Outside UGA: A</td>
<td>1-Methylnaphthalene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Chromium</td>
<td>Outside UGA: A</td>
<td>2-Methylnaphthalene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Chromium dissolved</td>
<td>Outside UGA: B</td>
<td>Acenaphthene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: B</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Copper</td>
<td>Outside UGA: A</td>
<td>Acenaphthylene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Copper dissolved</td>
<td>Outside UGA: A</td>
<td>Anthracene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Dissolved Organic Carbon</td>
<td>Outside UGA: A</td>
<td>Benz(a)anthracene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>Outside UGA: A</td>
<td>Benzo(a)pyrene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: A</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Hardness as CaCO3</td>
<td>Outside UGA: A</td>
<td>Benzo(b)fluoranthene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Nitrite-Nitrate</td>
<td>Outside UGA: A</td>
<td>Benzo(g,h,i)perylene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Ortho-phosphate</td>
<td>Outside UGA: A</td>
<td>Benzo(k)fluoranthene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>Outside UGA: A</td>
<td>Benzofluoranthenes, Total</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>Outside UGA: A</td>
<td>Cadmium</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>Outside UGA: A</td>
<td>Cadmium dissolved</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td>Lead</td>
<td>Outside UGA: B</td>
<td>Carbazole</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: B</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Chrylene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Dibenz[a,h]anthracene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Dibenzofuran</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Dibutyl phthalate</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Diethyl phthalate</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Dibenzo(a,h)anthracene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Dibenzofuran</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Di-N-Octyl Phthalate</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Diquat</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Fluorenone</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Lead dissolved</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>PCN-002</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Phenanthrene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Pyrene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Retene</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Silver</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Silver dissolved</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
<tr>
<td></td>
<td>Outside UGA: A</td>
<td>Total Benzofluoranthenes</td>
<td>Outside UGA: C</td>
</tr>
<tr>
<td></td>
<td>Within UGA: C</td>
<td></td>
<td>Within UGA: C</td>
</tr>
</tbody>
</table>

Water Quality ----------------------

Sediment Quality ---------------
Q1: Biological Status

- Biological condition was generally worse in small streams within UGAs compared to streams outside UGAs.
Q1: Comparison to water quality standards

• Higher frequency of exceedance of fecal coliform standard at sites within UGAs

• Similar frequency of exceedance of temperature, pH, and dissolved oxygen standards at sites within and outside of UGAs

• Measured metals concentrations did not typically exceed relevant acute or chronic standards for the protection of aquatic life.
Q1: Comparison to sediment quality standards

• Measured sediment contaminant concentrations did not typically exceed sediment quality standards within or outside UGAs.
Q1: Water Quality Status

• Status based on WQI and temperature similar inside and outside UGAs

• Greater proportion of stream length within UGAs in poor condition based on Fecal Coliform bacteria and Total Phosphorus
Q1: Sediment Quality Status

- Highest concentrations measured typically occurred within UGAs
- Zinc concentrations distinctly elevated within UGAs
Q1: Habitat Status

- Habitat in poor condition similar within and outside UGAs except for wood volume and pool area
- Habitat poor + fair condition similar within and outside UGAs except for stream substrate status
Q2/Q3: Natural and human variables that correlate with BIBI scores

- **Natural variables**
 - Mean December precipitation
 - Longitude

- **Human variables**
 - High Intensity Development
 - Riparian Canopy Cover
 - Chloride in water
 - Zinc in sediment
 - House density
 - Stream embeddedness
 - Etc

![Relative Percent Importance](chart.png)
Q2/Q3: Natural and human variables that correlate with Trophic Diatom Index

- Natural variables
 - Longitude
- Human variables
 - Total Phosphorus
 - Large Wood Volume
 - House Density
 - Total Nitrogen
 - Chloride
 - Watershed Total Nitrogen Yield
 - Etc

![Chart showing relative percent importance of variables correlating with Trophic Diatom Index]
Work on answering remaining questions in progress

• **Q4**: How does SAM results compare to other monitoring programs in Puget Sound?

• **Q5**: What parameters would be carried forward for trend assessment of SAM stream monitoring in the future, and at what timing and frequency?
SAM Puget Lowlands Streams Status & Trends

Current Schedule

• Draft report in progress
• Compete draft report for review by August 2017
• Final report completed by December 2017
Questions?
Using Transplanted Mussels to Assess Contaminants in the Puget Sound’s Nearshore Habitats

Jennifer Lanksbury, Laurie Niewolny, Andrea Carey, Mariko Langness, Sandra O’Neill, James West

Toxics-focused Biological Observation System (TBiOS) for the Salish Sea
Washington Department of Fish and Wildlife
Mussels are natural environmental samplers

Illustration by Ethan Nedeau
What does SAM nearshore mussel monitoring aim to accomplish?

1. Characterizes the extent of tissue contamination in nearshore biota in urban growth areas (UGA) of Puget Sound, using mussels as the indicator species.

2. Will track changes in mussel contamination over time to answer the question: *Is the health of nearshore biota in Puget Sound improving, deteriorating, or remaining unchanged?*
Mussel Monitoring Sites:

- 73 nearshore sites (40 SAM + 33 additional)
- Winter exposure for 3 month (2015/16)
- Native mussels (*Mytilus trossulus*)
- Transplanted in cages
Chemical Analyses

• **Organic chemicals:**
 • Polycyclic aromatic hydrocarbons (PAHs)
 • Polychlorinated biphenyls (PCBs)
 • Polybrominated diphenylethers (PBDEs)
 • Organochlorine pesticides - DDTs, chlordanes, HCB, aldrin, dieldrin, HCHs, endosulfan 1, Mirex

• **Metals:**
 • Arsenic, Cadmium, Copper, Lead, Mercury, Zinc
Concentration (ng/g, dry weight)

- PAHs: 49 - 7350 ppb
- PCBs: (35.5) ppb
- PBDEs: 84%
- DDTs: 86%
PAHs highest in highly urbanized Elliott Bay.

Also elevated in Eagle Harbor, Anacortes, Sinclair Inlet, and Commencement Bay.
PAHs, PCBs, PBDEs, DDTs

Concentration (ng/g, dry weight)

6 - 236 ppb

100%

84% 86%

(35.5) (5.42) (0) (0)
THE PCB CHALLENGE
PCBs CAN BE FOUND IN EVERYDAY PRODUCTS

- paint
- printing inks
- clothing pigments & dyes
- pesticides
- old fluorescent light ballasts
- lubricants & hydraulic fluids

- Transformers
- Building under construction
- Brick wall with peeling paint
- Engine with high pressure gas label
PCBs highest in highly urbanized Elliott Bay and Salmon Bay.

Also elevated in Sinclair Inlet, and Gig Harbor.
PBDEs
PBDEs highest in highly urbanized Elliott, Salmon, and Commencement Bays.

Also elevated in Sinclair Inlet.
DDTs highest in highly urbanized Elliott Bay and Salmon Bay.

Also elevated in Eagle Harbor and Commencement Bay.
Factors Related to Mussel Contamination

1. Municipal land-use designation

2. Degree of impervious surface in nearshore-adjacent watersheds

- Both describe urban development in slightly different ways.
- Each accounted for 20-50% of the variability in PAHs, PCBs, PBDEs, and DDTs in nearshore mussels.

<table>
<thead>
<tr>
<th>Type</th>
<th>Test</th>
<th>Significant Results (α <0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Organic Contaminants Metals</td>
</tr>
<tr>
<td>Municipal land-use planning designations</td>
<td>UGA vs. Reference PAHs, PCBs, PBDEs, DDTs</td>
<td>NS</td>
</tr>
<tr>
<td>UGA class (city vs. unincorporated-UGA)</td>
<td>PAHs, PCBs, PBDEs, DDTs</td>
<td>Zinc</td>
</tr>
<tr>
<td>Largescale upland variables* measured in adjacent watersheds with an average area 8.8 km² (3.4 miles²)</td>
<td>mean % Impervious Surface PAHs, PCBs, PBDEs, DDTs</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>% Urban area PBDEs, DDTs</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>% Forested area NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>% Agricultural area PCBs, PBDEs, DDTs</td>
<td>Lead</td>
</tr>
<tr>
<td></td>
<td>% Wetland area NT</td>
<td>NT</td>
</tr>
<tr>
<td>Small-scale upland variables† measured within 200 meters (656 ft) inland from shoreline</td>
<td>% Urban area NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>% Forested area NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>% Agricultural area NS</td>
<td>NS</td>
</tr>
<tr>
<td>In-water or onshore point sources</td>
<td>Marina/ferry terminal presence PAHs, PCBs, DDTs</td>
<td>Lead</td>
</tr>
<tr>
<td></td>
<td>Railroad presence PAHs, PBDEs, DDTs</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Creosote observed NS</td>
<td>NS</td>
</tr>
<tr>
<td>Natural geographical/geological features</td>
<td>Shoreline form (bay vs. open) NS</td>
<td>Lead</td>
</tr>
<tr>
<td></td>
<td>Substrate (depositional vs. coarse) NS</td>
<td>Lead</td>
</tr>
</tbody>
</table>

NS = not significant, NT = not tested due to lack of replicates

* Data from National Land Cover Dataset (NLCD) 2011
† Data from NOAA's C-CAP Land Cover Atlas shoreline characterization
Municipal Land-Use Designations break the urban growth areas (UGAs) into:

- Cities
- Unincorporated-UGAs
Contaminant Concentration (ng/g, dry weight)

PAHs
- Reference Site: A
- Unincorporated UGA: B
- City: C

PCBs
- Reference Site: A
- Unincorporated UGA: B
- City: C

PBDEs
- Reference Site: A
- Unincorporated UGA: B

DDTs
- Reference Site: A
- Unincorporated UGA: B

Level Replicates
- Reference: 6
- Unincorporated: 17
- City: 26
How is the degree of Impervious Surface in nearshore-adjacent watersheds different from the Municipal Land-Use Designations?
Average impervious surface in the watershed

- **PAHs**
 - <20%: A
 - 21-50%: A
 - 51-100%: B

- **PCBs**
 - <20%: A
 - 21-50%: AB
 - 51-100%: B

- **PBDEs**
 - <20%: A
 - 21-50%: B
 - 51-100%: B

- **DDTs**
 - <20%: A
 - 21-50%: B
 - 51-100%: C

<table>
<thead>
<tr>
<th>Level</th>
<th>Replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td><20%</td>
<td>20</td>
</tr>
<tr>
<td>21-50%</td>
<td>23</td>
</tr>
<tr>
<td>51-100%</td>
<td>3</td>
</tr>
</tbody>
</table>
Conclusions

Toxic contaminants are entering the nearshore food web of the Puget Sound, especially along shorelines adjacent to highly urbanized areas.

- PAHs, PCBs, PBDEs, and DDTs were the most abundant organic contaminants

- Concentrations were significantly higher in urbanized areas as measured by;
 - Municipal Land-Use Classification (city vs. Unincorporated-UGA)
 - Impervious Surface in the Adjacent Nearshore Watershed

- Several organic contaminants were elevated in areas near marinas, ferry terminals, and railroad lines

- Concentrations of metals were relatively low
What is SAM mussel monitoring doing for you?

• Characterization of over 70 nearshore sites allows us to compare contaminant conditions on local and regional scales to conditions in the whole Puget Sound UGA.

• Tracking contaminants in mussel tissue over time will tell us (and Puget Sound decision-makers) about the bio-available contaminants still actively being delivered to the nearshore environment.

• Mussel monitoring data will contribute information about the effectiveness of stormwater management programs...
 ➢ e.g. Can we see differences in nearshore contamination in Puget Sound UGAs implementing different levels of BMPs? Or remediation areas? Or???
Thank you
Marina of ferry terminal <2 km from mussel site

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Marina or Ferry Terminal (n = 18)</th>
<th>None (n = 25)</th>
<th>t(41)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAHs</td>
<td>646</td>
<td>263</td>
<td>-3.76</td>
<td>0.001</td>
</tr>
<tr>
<td>PCBs</td>
<td>53.2</td>
<td>29.0</td>
<td>-2.54</td>
<td>0.015</td>
</tr>
<tr>
<td>DDTs</td>
<td>3.89</td>
<td>2.38</td>
<td>-2.29</td>
<td>0.027</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Geometric mean conc. (mg/kg, dry wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAHs</td>
<td>264</td>
</tr>
<tr>
<td>PCBs</td>
<td>29.9</td>
</tr>
<tr>
<td>DDTs</td>
<td>2.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Geometric mean conc. (ng/g, dry wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>87.3</td>
</tr>
</tbody>
</table>

Pennsylvania Railroad <500 m from mussel site

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Railroad (n = 9)</th>
<th>None (n = 34)</th>
<th>t(41)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAHs</td>
<td>656</td>
<td>332</td>
<td>-2.13</td>
<td>0.039</td>
</tr>
<tr>
<td>PBDEs</td>
<td>10.9</td>
<td>4.89</td>
<td>-2.26</td>
<td>0.029</td>
</tr>
<tr>
<td>DDTs</td>
<td>4.51</td>
<td>2.61</td>
<td>-2.08</td>
<td>0.044</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Geometric mean conc. (ng/g, dry wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAHs</td>
<td>332</td>
</tr>
<tr>
<td>PBDEs</td>
<td>4.89</td>
</tr>
<tr>
<td>DDTs</td>
<td>2.61</td>
</tr>
</tbody>
</table>
Zinc Copper Arsenic Cadmium Lead Mercury

Concentration (mg/kg, dry weight)

0.0 0.1 1.0 10.0 100.0

(6.14) (7.60) (84.3)

(0.044) (0.342)
Puget Sound Nearshore Sediment Monitoring for the Stormwater Action Monitoring (SAM)

Robert Black¹, Brandi Lubliner², Abby Barnes³ and Colin Elliot⁴

¹Washington Water Science Center, US Geological Survey, Tacoma, WA.
²Washington State Department of Ecology, Olympia, WA.
³Washington State Department of Natural Resources, Olympia, WA.
⁴King County Environmental Lab, Seattle WA.
Why Nearshore Sediment

- Stormwater is implicated as main pollution source to Puget Sound and gaining attention for salmon and orca recovery.
- Stormwater chemicals are often attached or become attached to sediment until aquatic plants and animals come in contact within them.
Project Goals

• Assess the chemical quality of Puget Sound sediment quality in the nearshore urban areas within Urban Growth Areas (UGAs).

• Document geographic patterns.

• Establish protocol to document natural and human-caused changes over time in Puget Sound nearshore sediments.
Project Goals (cont.)

• Identify existing nearshore sediment quality problems and, where possible, provide data to help target sources.

• Provide uniformly collected and documented high quality data that can assist the regulatory agencies in measuring the success of stormwater and other environmental management programs.
Location of Sites

- 40 sites randomly selected

- Allows for the evaluation of sediment chemistry “Sound-wide”
 - (i.e. sites may not be in every jurisdiction and don’t need to be)
Nearshore sediment quality work is being collected, where possible, with bacteria and mussel sampling to provide information to efficiently, effectively, and adaptively manage stormwater to reduce negative impacts on the Puget Sound.
How, What and Why

How?
Samples were collected from a boat using specialized sediment sampling equipment and processed on the boat.

What?
Metals, PCBs, Oils, Combustion Chemicals, and other anthropogenic chemicals. Also Microplastics (USGS $)

Why?
All of the chemicals sampled have known effects on human and/or aquatic animal health, some at low levels.

Microplastics are suspected of physically impacting aquatic animals and carry anthropogenic chemicals.
When?

• Sampling done in summer of 2016.
• As of May 25, 2017, all chemical data is back from the labs.
• Microplastic analysis is underway at USGS Tacoma Lab.
• Draft report in late summer 2017.
Preliminary Nearshore Sediment Study Observations

• Random design won’t assure a site in every jurisdiction. 40 randomly identified sites are representative of “urban nearshore” across the region.
 • Will examine relationships between sediment quality and potential anthropogenic and natural sources

• Trend program - Stormwater runoff is source of contaminants to nearshore. Which parameters will be best to track over time?
 • Examples: metals (lead from gasoline, copper in moss treatments/brake pads, zinc in building sources) and/or flame retardants, microplastics, etc...
Preliminary Nearshore Sediment Study Observations

• Study leveraged design and protocols from Ecology, EPA, and USGS.

• Will compare to other programs to define the best trend program for SAM.

• Study also leveraged USGS funds to examine microplastics in nearshore sediment.

• Worked with King County and WA Dept. of Natural Resources which helps the effort remain relevant with other stormwater outfall/stormwater management efforts.
Bacteria Results for Nearshore Marine Areas in Puget Sound, 2010-2015

What kind of bacteria data is collected, and are there any data gaps?
Who collects nearshore bacteria data and why?
Where is bacteria collected?

Fecal Coliform Bacteria Sites
Where is bacteria collected?

Enterococcus Bacteria Sites
Where is bacteria collected?

E coli Bacteria Sites
Data Analysis

2010-2015 Nearshore Bacteria Data for West Central Puget Sound

Max=3000 Max=817 Max=3000 Max=135 Max>2400 Max=24200

90th %tile criteria

GM criteria

90th %tile criteria

GM criteria

0 1 10 100 1000 10000
Fecal Coliform #/100 mL

0 1 10
Enterococci #/100 mL

All FC Data
n=11,066

Kitsap Co. FC Data
n=4421

Bainbridge Is. FC Data
n=14

BEACH FC Data
n=66

DOH FC Data
n=6565

BEACH Enterococci Data
n=3588

● 10th %tile — Minimum ● Geometric Mean = Maximum ● 90th %tile
Nearshore Bacteria Data Gaps

- State programs DOH and BEACH have the most consistent bacteria monitoring programs Puget Sound wide.
- Kitsap and King counties conduct bacteria monitoring program.
- Tribes conducted monitoring in the northern part of Puget Sound.
- Cities, even Phase I and II, did not conduct monitoring.
What next?

• Conduct Additional statistical analysis on 2010-2015 data set.

• Design Options for Bacteria Status and Trends Monitoring Program
Questions?

https://fortress.wa.gov/ecy/publications/SummaryPages/1703004.html

- Final Report at:
 https://fortress.wa.gov/ecy/publications/SummaryPages/1703004.html
Context for SAM Source ID projects

Karen Dinicola, SWG Project Manager
Washington State Department of Ecology
Permit S8.D Source identification

• Goals:
 • Pollution identification and elimination methods
 • Regional solutions to common problems

• Objectives:
 • Priorities for reducing sources
 • Best ways to solve, reduce, prevent issues
 • Evaluate data to inform projects and funding
What is an illicit discharge?

• Any discharge that’s not entirely stormwater
 • Some non-stormwater discharges are specified as “allowed” in the permit
• Permittees have requirements to detect and eliminate these discharges
 • Illicit Discharge Detection and Elimination (IDDE) program
2014 IDDE Data Evaluation

James Packman

Greg Vigoren

Aspect Consulting

City of Lakewood

Stormwater Action Monitoring
SAM’s first Source ID project

• Collect and assemble one year of illicit discharge data reported by permittees
 • How are permittees keeping records and submitting data?
 • What types of pollution events are being reported?
 • What methods are being used to address the problems?
Evaluated data from 2014

- Permittee submittals for annual reports to Ecology
 - Number of illicit discharges
 - Summary of corrective actions
 - Description of timelines
- Very little consistency in the information provided by the permittees
2,913 possible incidents were reported in 2014
2,133 illicit discharges were confirmed in 2014
Most common pollutants found

1. Hydrocarbons and vehicle fluids
2. Sediment, soil, and construction waste
3. Industrial discharges
4. Sewage
5. Cleaning chemicals
6. Trash
Most common sources

1. Spills, accidents
 • Relatively few from auto repair shops
2. Dumping
3. Construction BMP failures
4. Illicit connections, leaks
5. Industrial activity
Most common indicators

1. Visual
 - Turbidity, flow
2. Null
 - Not reported
3. Chemical testing
4. Odor, pH, fecals
How are incidents reported?

1. Hotline calls
 • And direct reports to jurisdiction staff
2. Inspection or discovery by jurisdiction staff
3. Referrals from another agency
Some uses of a regional IDDE database

INQUIRE
• Local inquiry: look up how specific discharges in specific areas have been addressed

SHARE
• Jurisdictional inquiry: compare enforcement methods among jurisdictions

TRACK
• Regional inquiry: look up what type of pollution occurred over time in multiple areas
Future projects

• More analyses
 • Recommending that Permittees’ reporting be standardized for next permit cycle

• Projects to enhance methods

• Recommendations for regional solutions
Questions?

James Packman
jpackman@aspectconsulting.com
206-780-7723
www.aspectconsulting.com

Greg Vigoren
gvigoren@cityoflakewood.us
253-983-7771
www.cityoflakewood.us

Karen Dinicola
karen.dinicola@ecy.wa.gov
360-407-6550
www.ecy.wa.gov
What’s ahead for SAM?

Brandi Lubliner, SAM Coordinator
Washington State Department of Ecology
What’s next for SAM?

• Communicating SAM work
 • Website, Listserv, Newsletter
 • SAM project fact sheets

• Select more stormwater management effectiveness studies

• Defining trends programs for receiving water studies

• Identify projects to help reduce pollution via source control
We need you to get involved with SAM!

• Help us develop SAM projects in an open, coordinated, and shared manner that capture a regional understanding of how management actions can lead to results.

• How to get involved:
 • Respond to SAM surveys or requests for data
 • Join a project advisory committee or serve as a liaison
 • Join SWG caucuses and subgroups
More information

SAM webpage: http://www.ecy.wa.gov (search “SAM”)
 • Ecology’s website is getting overhauled in July, anticipate changes to bookmarks

SAM email: SAMinfo@ecy.wa.gov