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Abstract The Fine Sediment Biotic Index (FSBI) is a

regional, stressor-specific biomonitoring index to assess

fine sediment (\2 mm) impacts on macroinvertebrate

communities in northwestern US streams. We examined

previously collected data of benthic macroinvertebrate

assemblages and substrate particle sizes for 1,139 streams

spanning 16 western US Level III Ecoregions to determine

macroinvertebrate sensitivity (mostly at species level) to

fine sediment. We developed FSBI for four ecoregion

groupings that include nine of the ecoregions. The group-

ing were: the Coast (Coast Range ecoregion) (136 streams),

Northern Mountains (Cascades, N. Rockies, ID Batholith

ecoregions) (428 streams), Rockies (Middle Rockies,

Southern Rockies ecoregions) (199 streams), and Basin and

Plains (Columbia Plateau, Snake River Basin, Northern

Basin and Range ecoregions) (262 streams). We excluded

rare taxa and taxa identified at coarse taxonomic levels,

including Chironomidae. This reduced the 685 taxa from

all data sets to 206. Of these 93 exhibited some sensitivity

to fine sediment which we classified into four categories:

extremely, very, moderately, and slightly sensitive; con-

taining 11, 22, 30, and 30 taxa, respectively. Categories

were weighted and a FSBI score calculated by summing

the sensitive taxa found in a stream. There were no orders

or families that were solely sensitive or resistant to fine

sediment. Although, among the three orders commonly

regarded as indicators of high water quality, the Plecoptera

(5), Trichoptera (3), and Ephemeroptera (2) contained all

but one of the species or species groups classified as

extremely sensitive. Index validation with an independent

data set of 255 streams found FSBI scores to accurately

predict both high and low levels of measured fine sediment.

Keywords Fine sediment � Macroinvertebrates � Aquatic

bioassessment � Sediment tolerance � PNW ecoregions

Introduction

Excessive sedimentation is the most important cause of

lotic ecosystem degradation in the United States in terms of

stream distance impacted (USEPA 2000). This is a concern

to environmental managers because increased inorganic

sediment loads alter the natural biotic community (algae,

macrophytes, invertebrates, and fishes) in streams (Tebo

1955; Cordone and Kelley 1961; Waters 1995; Wood and

Armitage 1997; Kaller and Hartman 2004; Suttle and

others 2004; Fudge and others 2008). Increased inorganic

sediment loads, over quantities or frequencies that occur

naturally, can influence the stream biota in a number of

ways. Turbidity increased by sediments can reduce stream

primary production by reducing photosynthesis, physically

abrading algae and other plants, and preventing attachment

of autotrophs to substrate surfaces (Van Nieuwenhuyse and

LaPerriere 1986; Brookes 1986). Decreasing primary pro-

duction can affect many other organisms in the stream food

web (Izagirre and others 2009). Sedimentation has been

shown to be a major factor in the loss of habitat for mussels

worldwide (Poole and Downing 2004; Geist and Aueus-

wald 2007). Minshall (1984) examined the importance of

substratum size to aquatic insects and found that substra-

tum is a primary factor influencing the abundance and
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distribution of aquatic insects. Aquatic macroinvertebrates

are adversely affected by habitat reduction and/or habitat

change resulting in increased drift, lowered respiration

capacity (by physically blocking gill surfaces or lowering

dissolved oxygen concentrations), and reducing the effi-

ciency of certain feeding activities especially filter feeding

and visual predation (Lemly 1982; Waters 1995; Runde

and Hellenthal 2000 a, b; Suren and Jowett 2001). Macr-

oinvertebrate grazers are particularly affected as their food

supply either is buried under sediments or diluted by

increased inorganic sediment load thus increasing search

time for food (Suren 2005; Kent and Stelzer 2008).

Deposited sediments affect fish directly by smothering eggs

in redds (Fudge and others 2008), altering spawning hab-

itat, and reducing overwintering habitat for fry (Cordone

and Kelley 1961), and, indirectly by altering invertebrate

species composition, thereby decreasing abundance of

preferred prey (Suttle and others 2004). Declines in sala-

mander abundance also were seen with increases in fine

sediment inputs (Lowe and Bolger 2002).

Impacts of natural and anthropogenic disturbances to

aquatic ecosystems have been assessed with biomonitoring

tools. Most U.S. states currently use biomonitoring in their

water quality monitoring programs (Barbour and others

1999), with similar efforts in other countries (Furse and

others 2006; Marchant and Norris 2006). Freshwater bio-

monitoring programs examine aquatic macroinvertebrates

(primarily insects), algae (diatoms in particular), and fish. In

addition other biotic groups like the post- parasitic stage of

mussels have been found to be sensitive to fine sediment

deposition (Österling and others 2010), thus offering

potential as a tool to both evaluate condition and document

changes. The use of various freshwater biota to monitor

stream conditions is widespread, with a steady development

of tools including those developed for specific stressors.

Macroinvertebrates were chosen for this study because

they integrate conditions of the entire watershed. They rep-

resent an intermediate trophic level between aquatic primary

producers (algae) and higher order consumers (fish) allowing

one to infer conditions of upper and lower trophic levels.

Algae are typically shorter-lived and respond to small dis-

turbances; for example, a spate may reduce chlorophyll

a levels dramatically while the invertebrates remain unchan-

ged. Fish, on the other hand, are long-lived but may take

longer to respond to non-point sources like increased fine

sediment. Problems in biomonitoring also occur with fish

because of their greater mobility and the possible need for

permits if endangered fish reside in the stream. Consequently,

some western U.S. states are banning widespread fish sam-

pling to protect endangered salmonids. Currently in the United

States, with the exception of endangered Mollusca, there are

no sampling permits required for macroinvertebrates, so their

use is widespread in biomonitoring protocols.

Bioassessments used by the United States Environmental

Protection Agency (USEPA) and state governing bodies

have continually evolved since the initiation of the USEPA

national guidance Rapid Bioassessment Protocols (RBP)

were instituted to monitor and address Clean Water Act

legislation (Plafkin and others 1989). Traditional macroin-

vertebrate metrics (taxa richness, density, diversity, EPT

(Ephemeroptera, Plecoptera, and Trichoptera) taxa, EPT/D

(Diptera) ratio, etc.) initially were augmented by multimetric

indices (such as the Hilsenhoff biotic index (HBI)) and

various Indices of biotic integrity (IBI’s) that incorporated

several macroinvertebrate measures into a single score for a

stream. Macroinvertebrate and stream modeling such as the

River Invertebrate Prediction and Classification Scheme

(RIVPACS) model and a variety of multivariate analyses

(Karr 1981; Hilsenhoff 1987; Simpson and others 1996)

followed. Each method of data analysis builds upon previous

measures and several methods can be used concurrently.

Most of these bioassessment methods do not consider spe-

cific pollutants, but treat all anthropogenic disturbance the

same by identifying and enumerating all taxa within the

community sampled to assess the overall health of a stream.

However, individual species within the same community

exhibit broadly differing ranges of tolerance to environ-

mental disturbance (Resh and Unzicker 1975; Mangum and

Winget 1991; Winget and Mangum 1991; Angradi 1999).

Some species at a given site may remain unaffected by a

particular disturbance, while others are negatively impacted.

We used this fact to develop an index specific to fine sedi-

ment conditions to be used separately or in combination with

traditional measures in assessing stream health.

Our objectives were to develop a stressor-specific index

for fine inorganic sediment (clay, silt, and sand particles

\2 mm in diameter) and to test the utility of the index. We

chose 2 mm because most stream monitoring protocols use

some form of a Wolman pebble count and we consider

2 mm the smallest size one can measure reliably using

pebble count methods. The Fine Sediment Biotic Index

(FSBI) we present was developed by first indentifying

macroinvertebrate taxa that are sensitive to fine sediment

from data sets across the Pacific Northwest (PNW) that

included both macroinvertebrates and fine sediment data.

Second, we tested the efficacy and reliability of the FSBI

on a randomly selected group of streams.

Material and Methods

Data Sets

Macroinvertebrate and substrate data were combined from

several existing projects for 1394 streams or stream segments

in the PNW (Table 1). The sites were located in sixteen Level
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III Ecoregions (Omernik 1987; USEPA 2003) (Table 1). The

majority of these sites represent a single stream, however in

some cases, a stream was sampled upstream and downstream

of a sediment-producing disturbance, and both sites were

included. There were 97 sites from the Washington Coast

Range and Yakima River Basin (Regional Environmental

Monitoring and Assessment Program (R-EMAP),Merritt and

others 1999), 66 sites representing major Ecoregions of

Washington (WA Ambient Biological Assessment, Plotnikoff

and Ehinger 1997), 74 sites from Oregon (R-EMAP sites), 69

sites from northern Idaho (Potlatch Corp.), 813 sites from all

ecoregions in Idaho (Beneficial Use and Reconnaissance

Project (BURP), Clark 1998), 43 sites representing major

ecoregions in Idaho (ISU Stream Ecology Center), and 232

sites representing all ecoregions of Wyoming. These sites are

mainly Strahler first through fifth order streams. Two hundred

and fifty-five Idaho BURP streams were removed from the

data set and used to validate the FSBIs. In addition, we used

only ecoregions with 25 or more streams, leaving 1,025

streams from nine ecoregions to develop the FSBIs.

Physical Characteristics of Streams

We used physical characteristics (gradient and elevation)

and descriptions (Strahler stream order) to examine rela-

tionships between physical variables and percent fine sed-

iment (Strahler 1957; see also Davis and others 2001).

Strahler stream order classifies streams based on size and

linkages of tributaries. One stream was a Strahler sixth

order but it was included with the fifth order streams for

analysis. Elevation (m) was interpreted from quadrangle

maps (1:24 K).

Wolman pebble-count methods were used in each study

(with one exception) and streambed substrate data were

presented as percent fine inorganic sediment. Most federal

and state agencies used a modified Wolman pebble count

measuring particles (B-axis) across the stream channel at

pre-determined distances from bank to bank including non-

wetted and wetted channel width (Davis and others 2001;

Platts and others 1983; Clark 1998). A subset of Wash-

ington streams used a gridded hoop and determined the

quantity of fine sediment at the grid intersections (Plot-

nikoff and Ehinger 1997). Percentage of deposited fine

sediment (particles \2 mm in diameter: sand, silt, and

clay) from the field data was classified for each stream at

10% increments from 0 to 100% fine sediment. Two mil-

limeters was chosen because it is a size that can be con-

sistently measured with the Wolman type methods

(randomly selected particles with one’s finger). Physical

habitat data were analyzed for significant differences

among means (SPSS) with a one-way ANOVA followed

by a Bonferroni multiple comparison test. Homogeneity of

variance was determined with the Levene test (SPSS for

Windows 1999).

Development of the FSBI

Seven hundred and seven invertebrate taxa were reported

which included all aquatic insect orders, as well as Tur-

bellaria, Nematoda, Mollusca, Annelida, Hydracarina, and

Crustacea (see Relyea 2007—Appendix A for entire taxa

list). The macroinvertebrate data were collected by several

different methods (Kick-net, Surber, and Hess samplers

and in a variety of habitats). Therefore, initial emphasis

was placed in the analysis on the presence or absence of

individual macroinvertebrate taxa. Several criteria: wide-

spread geographic utility, ease of use, and cost-effective-

ness, were important in the development of a robust

bioassessment index. Keeping these criteria in mind, we

made two taxonomic exclusions in order to develop an

index that is both sensitive and robust given existing levels

of biomonitoring effort. These exclusions were coarse

levels of taxonomic resolution (which includes the Dip-

teran family Chironomidae) and rare taxa. The first

Table 1 Number of sites from level III ecoregions considered for

development of the fine sediment biotic indices

Ecoregion Group States Number

Covered of sites

Coast Range C OR, WA 136

Puget Lowlands * WA 7

Cascades NM OR, WA 38

Blue Mountains * ID, OR,

WA

21

Northern Rockies NM ID, WA 170

Idaho Batholith NM ID 220

Wasatch and Uinta * ID 8

Middle Rockies R ID, WY 171

Southern Rockies R WY 28

Columbia Plateau BP OR, WA 43

Eastern Cascade Slopes and

Foothills

* OR, WA 13

Snake River Plain BP ID, OR 138

Northern Basin and Range BP ID, OR 81

Wyoming Basin * ID, WY 23

Northwestern Great Plains ** WY 32

Middle Rockies-East * WY 10

Nine northwest US ecoregions were classified into four large ecore-

gion groupings: Coast (C) (Coast Range ecoregion), Northern

Mountain (NM) (Cascades, Northern Rockies, Idaho Batholith eco-

regions), Rockies (R) (Middle and Southern Rockies ecoregions), and

Basin and Plains (BP) (Columbia Plateau, Northern Basin and Range,

and Snake River Plain ecoregions) to create four indices

* Ecoregions with less than 25 streams

** For low taxa numbers, these were excluded from FSBI

development
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exclusion removed taxa at family, order, phylum, or

unknown (n = 124). In addition, if all species in a partic-

ular genus had the same occurrence value, we assigned one

value for the genus. Macroinvertebrate pupae also were

excluded because they were not always considered in the

different studies. The second exclusion removed rare taxa

(n = 377). We defined rare taxa as occurring in less than

2% of the streams. Those exclusions reduced the 685 taxa

to 206 for use in the index development.

To develop the fine sediment index we modeled relative

abundance (as a percent of total sampled taxa abundance in

each stream) for each of the 206 taxa and compared rela-

tive abundance to percent fine sediment. Scatter plots of

each of the 206 taxa plotted taxon relative abundance

against percent fine sediment to examine patterns between

a taxon and varying quantities of fine sediment (See Relyea

2007—Appendix B for all scatter plots).

Relative abundance of taxa is used to develop the taxon

tolerance category, whereas only presence of a taxon is

used to calculate FSBI. We assigned each of the 206 taxa

into six fine sediment-tolerance categories. Each taxon was

assigned a fine sediment tolerance category based on a

taxon’s 75th percentile of occurrence (i.e., the cumulative

75th % of site occurrences). The six categories began with

10% extending to 50% fine sediment in 10% increments for

the four sensitive categories, along with two categories for

greater than 50% fine sediment. None of the taxa’s 75th

percentile of occurrence was in streams of less than 10%

fine sediment. Macroinvertebrate taxa in streams with 0 to

20% fine sediment were classified extremely sensitive and

assigned a FSBI taxa value of 20. Those in streams with 21

to 30% fine sediment are classified very sensitive (FSBI

taxa value = 15), those in streams with 31 to 40% fine

sediment are classified moderately sensitive (FSBI taxa

value = 10), and those in streams with 41 to 50% fine

sediment are classified slightly sensitive (FSBI taxa

value = 5) (Table 2). Taxa in streams with [50% fine

sediment are considered moderately resistant (51–70 %) to

extremely resistant (71 to 100 %) had a FSBI taxa value of

zero and do not influence the FSBI score. The FSBI score is

the sum of the FSBI value of all taxa from the four most

sediment sensitive categories.

For each ecoregion, stream occurrences of a taxon were

expressed as the proportion of the number of streams in

which a taxon occurred in each 10% increment of fine

sediment category. The 75th percentile was then determined

by summing the proportions for each sediment category in

10% increments from 0 to 100% fine sediment. We chose

the 75th percentile over maximal occurrence (100th per-

centile) because organisms at their maximal limits typically

experience physiological and reproductive stress.

Table 2 Western U.S. macroinvertebrate taxa, number of sites, and

FSBI Scores for 93 sediment sensitive macroinvertebrates

Taxon* ORDER Number of

sites

FSBI

Extremely fine sediment sensitive

(0–20%)

Ampumixis dispar C 28 20

Claassenia sabulosa P 44 20

Despaxia augusta P 102 20

Ecclisomyia T 64 20

Megarcys P 220 20

Neaviperla P 38 20

Oligophlebodes T 107 20

Perlinodes aurea P 30 20

Rhithrogena hageni E 34 20

Rhithrogena robusta E 58 20

Rhyacophila hyalinata grp. T 123 20

Very fine sediment sensitive

(20–30%)

Antocha monticola D 37 15

Arctopsyche T 199 15

Arctopsyche grandis T 190 15

Atrichopogon D 53 15

Attenella margarita E 50 15

Brachycentrus americanus T 191 15

Caudatella E 194 15

Caudatella hystrix E 55 15

Cultus P 70 15

Doroneuria P 179 15

Drunella coloradensis/flavilinea E 155 15

Drunella doddsii E 499 15

Epeorus grandis E 174 15

Epeorus longimanus E 306 15

Hesperoconopa D 50 15

Hesperoperla pacifica P 248 15

Kogotus P 39 15

Rhithrogena spp. E 561 15

Rhyacophila angelita grp. T 114 15

Rhyacophila sibirica grp.-pellisa T 85 15

Rhyacophila vofixa grp. T 91 15

Setvena P 55 15

Moderately fine sediment sensitive

(30–40%)

Apatania T 112 10

Arctopsychinae T 48 10

Attenella E 95 10

Calineuria californica P 160 10

Dicosmoecus T 95 10

Dicosmoecus gilvipes T 54 10
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Each ecoregion’s data established the FSBI range for

that ecoregion. To reduce and consolidate the FSBIs, we

combined ecoregions that had similar FSBI ranges to create

four ecoregion groupings: the Coast (Coast Range ecore-

gion (136 streams), Northern Mountains (Cascades,

N. Rockies, ID Batholith ecoregions) (428 streams),

Rockies (Middle Rockies, Southern Rockies ecoregions)

(199 streams), and Basin and Plains (Columbia Plateau,

Snake River Basin, Northern Basin and Range (NBR)

ecoregions) (262 streams).

FSBI score and physical data (percent fine sediment)

were analyzed for differences among FSBI means for each

ecoregional group in the statistical software package (SPSS

for Windows 1999) with a one-way ANOVA followed by a

Bonferroni multiple comparison test. Homogeneity of

variance was determined with the Levene test (SPSS for

Windows 1999).

Validation of the FSBI

We validated FSBI using a randomly selected group of

streams (n = 255 streams) from the 1997 ID DEQ BURP

data. We did not use these streams in development of the

FSBI. Three of the four major ecoregion groupings were

represented: Northern Mountains (118), Basin and Plains

(119), and Rockies (18) streams. We compared by over-

laying scatter plots of % fine sediment and FSBI scores to

original FSBI distributions for each ecoregion.

Table 2 continued

Taxon* ORDER Number of

sites

FSBI

Dolophilodes T 118 10

Drunella coloradensis E 187 10

Drunella grandis E 107 10

Drunella grandis/spinifera E 132 10

Epeorus spp. E 949 10

Epeorus albertae E 155 10

Epeorus deceptivus E 131 10

Glossosoma T 432 10

Neophylax T 184 10

Neothremma T 188 10

Neothremma alicia T 57 10

Ordobrevia nubifera C 42 10

Oreogeton D 46 10

Paraleptophlebia bicornuta E 67 10

Paraperla P 115 10

Petrophila L 47 10

Polycelis coronata TU 157 10

Pteronarcys P 101 10

Pteronarcys californica P 52 10

Rhyacophila betteni grp. T 271 10

Rhyacophila sibirica grp.-narvae T 166 10

Rhyacophila sibirica grp.-valuma T 34 10

Rhyacophila sibirica grp.-valuma/
pellisa

T 29 10

Suwallia P 96 10

Slightly fine sediment sensitive

(40–50%)

Acentrella E 176 5

Acentrella insignificans E 74 5

Acentrella turbida E 72 5

Agapetus T 68 5

Amiocentrus aspilus T 40 5

Anagapetus T 58 5

Antocha D 347 5

Atherix D 113 5

Baetis bicaudatus E 324 5

Cinygmula E 612 5

Drunella spp. E 1199 5

Drunella spinifera E 100 5

Ecdyonurus criddlei E 56 5

Ephemerella tibialis E 370 5

Heterlimnius C 584 5

Ironodes E 39 5

Matriella teresa E 31 5

Narpus concolor C 52 5

Nixe E 101 5

Table 2 continued

Taxon* ORDER Number of

sites

FSBI

Octogomphus O 27 5

Parapsyche T 522 5

Prosimulium D 172 5

Protoptila T 28 5

Rhabdomastix D 107 5

Rhyacophila verrula grp. T 66 5

Serratella E 436 5

Visoka cataractae P 172 5

Yoraperla P 396 5

Zapada frigida P 25 5

Zapada oregonensis grp. P 153 5

Order key: C Coleoptera, D Diptera, E Ephemeroptera, L Lepidoptera,

P Plecoptera, O Odonata, T Trichoptera, TU Turbellaria

* Note: Taxonomic conventions change as taxonomists refine species

identifications. We have upgraded naming in these data sets from

the 1990’s where possible. However, genera that have undergone

major revisions, such as Ephemeroptera genera Serratella and Nixe,

we revised the species names, but also kept the genera names from the

older data sets
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Results

Physical Characteristics of Streams

Sediment transport and deposition are affected by several

physical controls. Streams with gradients over 11% typi-

cally did not have over 30% fine sediment (Fig. 1). Low

gradient streams (0 to 5%) had a wide range of percent fine

sediment from 0 to 100% (Fig. 1). Streams with greater

than 50% fine sediment usually had a gradient of 3% or less

and none had a gradient over 6.5% (Fig. 1).

There were differences among the different Strahler

orders and the percent of fine sediment (Fig. 2). First order

streams had more fine sediment (P = \0.001) than all the

other Strahler orders. Second order streams had less

fine sediment than first order streams, similar amounts as

third streams but more than fourth and fifth orders

(P = \0.001). It is noteworthy that in the first through

fourth orders some streams had up to 100% fine sediment

(Fig. 2).

Even with the high variability in percent fine sediment

for each ecoregion (Fig. 3), there were significant differ-

ences among some ecoregions. The Coast Range ecoregion

had the highest median percentage fine sediment at 27%

and was higher than all other ecoregions except the

Northern Basin and Range ecoregion (P = 0.1). The

mountainous ecoregions had the lowest median range of

fine sediment (4 to 10%) and were different from the

Coast Range, Snake, and NBR ecoregions, (P = 0.037 to

\0.0001). The Columbia Plateau had a median value of 6%

fine sediment while the other Basin and Plains ecoregions

(Snake, and NBR) had medians of 18 and 21% fine sedi-

ment respectively (Fig. 3).

Fine Sediment Biotic Index (FSBI)

Some sensitivity to fine sediment was detected in 93 of the

206 taxa. All taxa could tolerate fine sediment up to 10%.

Eleven taxa were extremely sensitive, 22 taxa very sensi-

tive, 30 taxa moderately sensitive and 30 taxa slightly

sensitive to fine sediment. Each of their 75% percentile

values were in progressively higher levels of fine sediment

up to 50% fine sediment (Table 2). Taxa in moderately
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resistant (50–70 % fine sediment) and very resistant (70 %)

categories had 86 and 27 taxa, respectively.

The FSBI score summed all sensitive taxa in a sample.

Range of values differed among the nine ecoregions

(Fig. 4). We combined ecoregions with similar range of

values into groups to create four FSBIs. The Coast ecore-

gion had the highest median fine sediment percentage

(Fig. 3) and a FSBI median value of 70 and was left as a

group. We formed two ecoregion groupings from the

mountainous ecoregions; Northern Mountains (Cascades,

N. Rockies, ID Batholith) and Rockies (Middle Rockies,

Southern Rockies). These groups had the lowest median

fine sediment percentage and the highest FSBI scores

(Figs. 3, 4). The mountainous ecoregions can be distin-

guished, with a median FSBI above 150 in the Northern

Mountain grouping, and the Rockies grouping with a

median FSBI below 150 but above 100. The Basin and

Plains ecoregion group (Columbia Plateau, Snake River

Basin, Northern Basin and Range ecoregions) had inter-

mediate levels of fine sediment (Fig. 3) but the lowest

FSBI scores with medians all below 50 (Fig. 4).

Streams were diverse including pristine streams in wil-

derness, streams with single pollutants, and streams with

multiple pollutants. Despite this variety, no stream had a

high FSBI score (indicating fine sediment intolerant taxa)

and moderate to high reported fine sediment. All streams

over the FSBI 90th percentile and most over the 75th

percentile had less than 30% fine sediment. The response to

the stressor in all ecoregion groupings was wedge shaped

similar to shown for the Northern Mountain ecoregion

group in Fig. 5, with a greater range of responses in

streams with low fine sediment and a narrow range at high

fine sediment levels.

Validation of the FSBI

The Idaho data set used for validation incorporated three of

the ecoregion groupings (Northern Mountain, Rockies, and

Basin and Range). The distribution of FSBI scores from the

255 randomly selected validation streams were very similar

to streams used to create the FSBI. Superimposition of

actual and validation data sets (Fig. 6) shows well-mixed

distributions and wedge shaped distributions. In addition,

most streams over the 75th percentile had less than 30%

fine sediment and all streams with greater than 50% fine

sediment scored below the 25th percentile in both actual

and validations data sets (Fig. 6). In the Rockies grouping

(not shown) the results were similar, with a smaller set of

streams (18).

Discussion

Most biomonitoring metrics examine overall stream health

and there generally has not been a way to separate single

stressors from the suite of stressors that can occur in a

stream. The FSBI is a diagnostic index designed to target

only the effect of fine inorganic sediment on stream

organisms. Diagnostic indices may well be the next step in

the evolution of bioassessment metrics (Chessman and

McEvoy 1998; Clews and Omerod 2008; Friberg 2010).

Targeting fine sediment and developing an index that uses

macroinvertebrates sensitive to increases in fine sediment,

FSBI advances traditional macroinvertebrate biomonitor-

ing by identifying a specific pollutant and not just the

overall health of the stream macroinvertebrate community.
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We present a biomonitoring tool to detect fine sediment

in streams that uses presence of common taxa to assess

degrees of impairment. In other efforts investigating

macroinvertebrate sensitivity to fine sediment, macroin-

vertebrate responses to ranges of fine sediment levels in

streams were documented (Appalachian—Angradi 1999;

Western US—Bryce and others 2008; Canada—

Kreutzweiser and others 2005; United Kingdom—Larsen

and Omerod 2010; New Zealand—Suren and Jowett 2001).

This study expands on the work by Relyea and others

(2000) and focuses on NW US. The approach can be used

by others with a well-distributed network of sampled

streams with standard taxonomy to develop other stressor

specific local index. This index uses a broad suite of

common taxa to the genus or species, but avoids difficult

groups (Chironomidae and Oligocheates). Exclusion rules

reduce the region-wide taxa list from 685 to 206. In

addition, by only requiring presence of a taxa, FSBI

streamlines laboratory and computational requirements.

We recognize that sampling effort affects the likelihood of

presence; however, users of the index can set efforts levels

for their particular monitoring effort. In addition, given the

taxa are common; typical sampling efforts would collect

the majority of those taxa.

All 206 taxa examined were found in streams with up to

26% fine sediment; however, at higher fine sediment levels

taxa started disappearing. Even so, taxa impairment began

occurring between 10 and 20% deposited fine sediment for

certain sensitive species. We classified these taxa as being

extremely sensitive to fine sediment. A few of the taxa

previously have been reported as sediment sensitive or

resistant (McClelland and Brusven 1980; Lemly 1982;

Mahoney 1984; Magnum and Winget 1991; McHenry

1991). In this effort, we started with 685 taxa and identified

93 taxa exhibiting some sensitivity to fine sediment.

This biomonitoring metric for fine inorganic sediment

had broad applicability in western US, and the development

of other regionally targeted indices elsewhere should be

possible where robust data sets data sets are available.

Central to our efforts here, the single FSBI introduced in

Relyea and others (2000), and other efforts (Huff and others

2008; Bryce and others 2008, 2010) was a broad under-

taking by the US EPA (Environmental Assessment and

Monitoring Program (EMAP)) designed to monitor trends

in environmental conditions. The EMAP program used

randomly-selected sites across broad landscapes (Stoddard

and others 2005). In addition, the EMAP program strongly

influenced methods of other efforts by individual states,

allowing us some similarity in methods across data sets,

although there were minor methodological differences.

Our results are in agreement with a large-scale data set

of 900 streams in the western United States that examined

the relationships of certain Ephemeroptera (mayflies) to

streambed substrate (Magnum and Winget 1991; Winget

and Mangum 1991). They found Drunella doddsii to be

highly correlated to streams with coarse substrates and

streams with moderate to high percentages of fine sedi-

ments did not support D. doddsii. This also was true in this

study as D. doddsii (n = 499), which was common, was

classified as very sensitive (75th percentile of occurrence at

30% fine sediment). Another mayfly, Tricorythodes minu-

tus, which we classified as moderately resistant in this

index (75th percentile of occurrence at 70% fine sediment)

they found preferred fine sediment over coarser substrates

and were abundant when a large amounts of fine sediment

was present.

The range in responses with those mayflies, suggests that

biomonitoring metrics at the order level may be inadequate.

Other Ephemeroptera that were moderately sensitive or
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slightly sensitive to fine sediment both in the literature and

in this research were Acentrella, Caudatella, Epeorus, and

Rithrogena (McClelland and Brusven 1980; Lemly 1982;

Mahoney 1984; McHenry 1991; Angradi 1999). Epheme-

roptera that were resistant to moderately resistant to

fine sediment both in the literature and in this research

were Ameletus, Baetis, Ephemerella, Heptagenia criddlei,

Paraleptophlebia, and Tricorythodes minutus. Therefore,

use of order as an indicator lacks discriminatory power.

Other orders had taxa with a similar range of sensitivity.

Trichoptera (T) and Plecoptera (P) have been reported both

in the literature and found in this research to exhibit a large

range tolerance. Some taxa are very sensitive or moderately

sensitive (Arctopsyche (T), Brachycentrus (T), Glossosoma

(T), Neothremma (T), Hesperoperla pacifica (P), and

Cultus (P)) while others are resistant and moderately

resistant - Hydropsyche (T), Sweltsa (P), Leuctridae (P),

and Zapada (P). Plecoptera had the most taxa (5) in the

extremely sensitive category. The majority of these were

semivoltine, so they are exposed to sediment fluxes over

2–3 years, which may make them more susceptible than

univoltine taxa to increases in fine sediment. This agrees

with other research that reports a decline in certain

Plecoptera taxa densities after anthropogenic disturbance

or sediment additions (Murphy and Hall 1981; Culp and

Davies 1983). The majority of the Diptera were found to be

fine sediment resistant. While we did not include Chiro-

nomidae, ten Diptera taxa showed some sensitivity to fine

sediment, although none was in the extremely sensitive

category. With the family Chironomidae, Angradi (1999)

observed different responses in proportions between sub

families with Orthocladiinae increasing, and Chironominae

declining with increasing levels of fine sediment. Thus,

there appear to be no orders of invertebrates that were

solely sensitive or resistant to fine sediment. This implies

that metrics at the ordinal level such as the EPT and D taxa

are poor indicators of fine sediment conditions.

At the family level, there are broad differences as well.

Within the family of net spinning, caddis flies (Hydro-

psychidae), Arctopsyche (very sensitive), and Parapsyche

(moderately sensitive) were sensitive whereas Cheumato-

psyche and Hydropsyche were present in streams with 70%

fine sediment. This range in responses underscores that

even family level indices are insufficient in targeting a

specific pollutant. The FSBI uses a straightforward scoring

system of common aquatic insect larvae/nymphs, the

majority of which are identified to genus. Scores for

streams fall on a continuum from high scores, representing

streams with a low percent of fine sediment, to low scores

representing streams with a high percentage of fine sedi-

ment. In addition, enumeration of insects is not needed; this

could accelerate macroinvertebrate processing and analysis

as well as reduce cost.

In an earlier version, a single FSBI was developed for

the entire northwest in an effort to promote simplicity

(Relyea and others 2000). The mountainous streams had

high FSBI scores and low-lying streams had low FSBI

scores. It soon was apparent that the appropriate monitor-

ing scale for the macroinvertebrate substrate relationship

was at the ecoregion. Ecoregions have different FSBI sig-

natures reflecting geologic, thermal, and hydrologic

regimes, as well as present and past human alterations

(Relyea 2007). Typical watersheds within an ecoregion

will presumably have similar FSBI scores. Any observed

differences could reflect differences in sediment regime,

perhaps related to land management history and practices.

The wedge shaped distribution in response to fine sed-

iment suggests limiting response at an upper threshold

response to fine sediment in each ecosystem groupings.

Lancaster and Belyea (2006) found that a limiting response

model better described hydraulic variables and macroin-

vertebrate relationships. Bryce and others (2008 and 2010),

using some of the same data sets as FSBI, also examined

fine sediment and aquatic macroinvertebrate relationships

with quantile regression. Other aquatic examples of wedge

shaped limiting responses to stressors include nutrient level

constraints to macroinvertebrate communities (Wang and

others 2007) and fish standing stock with habitat variables

(Terrell and others 1996).

There are several possible applications of the Fine

Sediment Bioassessment Index for streams. The first is to

compare the FSBI score for a study stream to the estab-

lished percentiles developed for ecoregions in this study.

This allows the investigator to determine impairment and

to compare the study stream to others in the same ecore-

gion. Secondly, the FSBI could be used to predict the

amount of fine sediment in a stream based on the macro-

invertebrate assemblage using the FSBI score distribution

developed for each ecoregion. Thirdly, the index could be

used in combination with other metrics or incorporated into

a bioassessment multi-metric or model, such as an IBI or

the RIVPACS model (Simpson and others 1996; Barbour

and others 1999). Finally, by using only taxa lists, one

could go to data from past collections to assess if condition

over time changed, and if fine sediment inputs were a

factor. This allows managers to determine effects of the

land-use practice by having ‘‘before and after’’ fine sedi-

ment index score.

Advantages of the FSBI are that a specific widely

occurring pollutant is targeted, it is easy to use, taxa lists

can be used from previous studies, not all taxa need be

identified, and no enumeration of insects is necessary. The

impact of fine sediment on aquatic organisms is complex,

yet the FSBI and the macroinvertebrate sediment toler-

ances associated with this metric provide a valuable diag-

nostic bioassessment tool that is superior to traditional
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bioassessment metrics in discerning fine sediment impacts

on the macroinvertebrate community. The FSBI currently

is applicable only to the northwestern United States; it was

developed from stream data in Idaho, Oregon, Washington,

and Wyoming and tested successfully with data from three

ecoregional groupings in Idaho. The approach used to

develop the FSBI for the northwest United States is

applicable anywhere sufficient data exist to determine

macroinvertebrate and substrate relationships.
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