Welcome!

We will get started soon

No sound? Connect your audio and listen for a sound check before we

start.

3	Select Audio Connection
	Audio Connection ×
	You're using computer for audio.
	Switch audio
	😪 Call in
lf you • Ca • Ca • En	select "Call in" II US Toll: +1-415-655-0001OR II U.S. Toll (Seattle): +1-206-207-1700 ter Webex-generated codes followed by "#"

Still can't hear us? Send the WQ Program host a chat through the chat box.

1

Using Webex features

Salmon Spawning Habitat Protection Rule

Science Advisory Group (SAG) Meeting #3: Fine Sediment December 9, 2020

Goals for Today's Meeting

- Make determinations on feasibility, utility, and subjectivity of fine sediment measures
- Receive feedback on Ecology's Watershed Monitoring Program
- Next Steps

Introductions of SAG Members

Name and affiliation of members present

Ecology Standards Staff

Susan Braley Webinar Facilitator Susan Braley@ecy.wa.gov

Bryson Finch Water Quality Standards Scientist Bryson.Finch@ecy.wa.gov

Marla Koberstein WebEx Moderator Marla.Koberstein@ecy.wa.gov

Chad Brown Water Quality Management Supervisor Chad.Brown@ecy.wa.gov

@ecy.wa.gov

Today's Agenda

- Recap of the last meeting's discussion on fine sediment
- Discuss individual physical, biological, and chemical based parameters used to characterize fine sediment
- Review Ecology's existing data and monitoring methods
- Next steps

Intro: List of Parameters

Parameter	Type of measure
Light penetration Turbidity Total suspended solids	Water column
Percent fine sediment (by weight or volume) Geometric mean diameter of sediment Relative bed stability Riffle stability Embeddedness Subsurface sediment in riffles	Physical streambed
Channel characteristics	Physical Channel Characteristics
Intragravel dissolved oxygen*	Chemical
Benthic macroinvertebrate index (BIBI)* Fine sediment biotic index (FSBI)	Biological

Water Column Measures

Water Column Measures

Water column measures are defined as a measure of the suspension of materials in the water column resulting in reduced light penetration, changes in behavior, and physiological based effects (typically particles <2 mm)

Effects

- Decreased primary and secondary production
- Decreased growth of fish
- Benthic invertebrate drift
- Decreased predatory efficiency
- o Behavioral changes

Selected Measures

- o Light penetration
- o Turbidity
- o Total suspended solids

Water Clarity Recommendations

Light penetration:

- Settleable and suspended solids should not reduce the depth of the photic zone by more than 10% from background
- o Method: secchi disk
- Turbidity:
 - Compare turbidity to background conditions
 - Method: turbidimeter (various forms)

Low Turbidity — High Turbidity

Total Suspended Solids

Total suspended solids

- o Measure of solid material per volume of water
- Generally captures inorganic material but also organics
- \circ Particles larger >2 um (<2um = dissolved) and less than 2mm
- \circ $\,$ Can be used to calculate sedimentation rates
- \circ Method: water filtration

A = mass of filter + dried residue (mg), B = mass of filter (tare weight) (mg), and V = volume of sample filtered (L)

Discussion

Light Penetration

<u>Turbidity</u>

Total Suspended Solids

- How useful are these parameters in evaluating fine sediment?
- What are disadvantages of using these measures?
- How feasible are these to measure?
- Are these measures redundant?

Streambed Measures

Streambed Measures

Defined as proportion of fine sediment among substrate

Parameters of interest:

- \circ Percent surface fines
- \circ Embeddedness
- o Geometric mean diameter of substrate
- o Riffle stability
- Relative bed stability
- o Subsurface sediment

Percent Surface Fines (weight or volume)

Defined as the percentage of streambed area with exposed fine sediments

- Relationship between surface fines and aquatic life effects needs further research
 - \circ $\,$ Relationships found between fines and EPT taxa
 - Studies suggest 20-30% fines as an effect threshold at <6mm and 10% fines less than 0.85mm for early life stages of fish
- Percent fines known to be a good metric of spawning habitat
- Some have suggested geometric mean and median particle size are superior measures

Embeddedness

Embeddedness measures the degree to which cobbles and large gravels are buried because of fine sediment deposition

- A high degree of variability can result from embeddedness measures collected with different methods, calculations, or observers
- Embeddedness frequently measured in riffles
- Should include cobble embeddedness and free matrix (unbedded particles)
- Useful for trend information
- Relationships with aquatic life is limited

Geometric Mean Diameter

Defined as the central tendency of a particle size composition of substrate materials

- Data collected can be used to characterize the distribution of substrate size
- Sometimes used as an index of the quality of spawning gravels
- Substrate size related to spawning suitability
- Similar metrics:
 - Fredle index
 - o Modified fredle index
 - o Arithmetic mean
 - o Median particle size

Subsurface Sediment in Riffles

Defined as percentage of core samples composed of fine sediment

- Most applicable in riffles and spawning areas
- Excessive subsurface sediments have detrimental effects on salmonid and invertebrate habitat suitability and redd conditions
- Several studies have established targets

Riffle Stability Index

Defined as the percentage of substrate particles (from a Wolman pebble count) that are smaller than the largest particles that are moved in channel forming flows

- May be a factor in redd scour
- As riffle stability degrades, pool habitat decreases

Relative Bed Stability

A measure of the relationship of the median particle size in a stream reach compared to the critical particle size calculated to be mobilized at bankfull

- Includes reach-wide pebble count and critical particle size (calculated from channel dimensions, flow characteristics, channel roughness factors)
 - RBS = D50 or DGM $/D_CBF$
 - D50 = Substrate median diameter as evaluated by a modified pebble count
 - DGM = Substrate geometric mean as evaluated by a pebble count
 - DCBF = The diameter of particles just beginning to move at bankfull = $(0.61RS)/\tau^*c$
 - R = Bankfull hydraulic radius
 - S = Bankfull slope
 - τ^*c = Shield's parameter for critical shear stress for incipient motion

Streambed Measures

- How useful are these parameters in evaluating fine sediment?
- What are disadvantages of using these measures?
- How feasible are these to measure?
- Are these measures redundant?

Chemical Metrics

Intragravel Dissolved Oxygen

Defined as dissolved oxygen content within substrate

- Measures reduced permeability of fine sediment in the aquatic environment
- Less oxygen exchange to support fish embryos macroinvertebrates
- Impacted by groundwater and hyporheic flow

Chemical Measures

- How useful is this parameter in evaluating fine sediment?
- What are disadvantages of using this measure?
- How feasible is it to measure intragravel DO?
- Is this measure duplicative of other measures?

Biological Metrics

Benthic Indexes

Uses the presence/absence of benthic macroinvertebrates to determine stream health

- Fine sediment known to adversely impact benthic macroinvertebrate community structure
- Not specific to particular pollutant
- May be difficult to directly link BIBI to fine sediment without other data
- Examples:
 - Aquatic fine sediment biotic index (Relyea et al. 2012)
 - Benthic index of biotic integrity (B-IBI)
 - Ecology multi-metric index
 - Hilsenhoff biotic tolerance index

Ecology MMI

Wash. State Dept. of Ecology Multi-Metric Index

Score	1	3	5
Taxa Richness	[0, 24)	[24, 33]	(33, ∞)
Ephemeroptera Richness	[0, 4]	(4, 6]	(6, ∞)
Plecoptera Richness	[0, 3)	[3, 5]	(5, ∞)
Trichoptera Richness	[0, 4)	[4, 6]	(6, ∞)
Clinger Percent	[0, 26)	[26, 47]	(47, 100]
Long-Lived Richness	[0, 3)	[3, 5]	(5, ∞)
Intolerant Richness	[0, 2)	[2, 2]	(2, ∞)
Percent Dominant	(70, 100]	[54, 70]	[0, 54)
Predator Percent	[0, 11)	[11, 19]	(19, 100]
Tolerant Percent	(19, 100]	[11, 19]	[0, 11)

Biological Measures

- How useful is this parameter in evaluating fine sediment?
- What are disadvantages of using this measure?
- How resource intensive is it to measure Biological Indices?
- Is this measure duplicative of other measures?

Channel Characteristics

Channel Characteristics

- Valuable metrics for evaluating sources of sediment and anthropogenic influences
- Biological effects of channel characteristics are more difficult to quantify
 - o Commonly compared to a reference condition

Parameters of interest:

- o Width/depth ratio
- Sediment rating curves
- o Bank stability
- Changes in peak flow
- Pool depth / frequency
- Riffle stability index
- o Sinuosity
- Etc...

Ecology Watershed Monitoring Program

Habitat Metric Dictionary

Dictionary of Metrics for Physical Habitat

Definitions and Calculations Used for Watershed Health Monitoring and Related Studies

Table of Contents

Page

Abstract	5
Dictionary of Metrics	7
Metric Category: Bank Quality	10
Metric Category: Bed Stability	12
Metric Category: Channel Dimensions	22
Metric Category: Fish Cover	40
Metric Category: Habitat Unit Dimensions	50
Metric Category: Habitat Unit Extent	53
Metric Category: Large Woody Debris	56
Metric Category: Riparian Cover	93
Metric Category: Riparian Disturbance	96
Metric Category: Riparian Vegetation Structure	104
Metric Category: Side Channel Quantity	119
Metric Category: Sinuosity	122
Metric Category: Substrate	124
References	133
Appendices	135
Appendix A. Alphabetical List of Metrics Reporting from WHMWeb	137
Appendix B. Glossary	145

Method no longer used

- Poor signal to noise ratio
- Replaced with 4 new bed observation methods:
 - o Angle
 - o **Position**
 - o Failure
 - o Cover
- Basis of new method:
 - Forest Service/BLM in PIBO

METRIC CATEGORY: Bank Quality

Bank instability Group: All non-null observations per DCE, entire site reach Scope: Sank instability ratings count (i) Reported: Bunk instability rating, a verage (ii) Definition: (i) count, of bank instability observations associated with the main channel (channel 0) as observed at the ends of each channel-spanning transect. Unit = observations of instability. (ii) average, of bank instability observations associated with the main channel (channel 0), as rated at the ends of each channel-spanning transect. Unit = percent. (i) N BankInstab WHM export ID: (ii) X BankInstab Observation type: Visual assessment Allowed observation values: ≥ 0 to ≤ 100 Plots at ends of 11 evenly-spaced cross-channel transects, Data collection schema: transects perpendicular to channel. Site reach length is variable 150 - 2000 m. 22; 1 observation per bank X 11 ransects Maximum observations (DCE): Minimum reporting qualifiers: Survey at least 77% complete (17 lots rated) 2009-2017 Reporting years to date): Calculation: ount(Bank instability observations) <> is pail (i) $\Sigma((\text{Denk instability ratings, left bank and right bank)) / N_BankInstab$ (ii)

Metric Category: Bed Stability

Diagrammatic hierarchical relationship of D_{gm} and LRBS to dependencies which also report from WHMWeb:

- 过 35

Metric Category: Channel Dimensions

Reported	WHM export ID
Channel slope, average	X Slope
Bankfull width.	
count	N BFWidth
average	X BFWidth
std. dev.	SD BFWidth
Wetted width,	
count	N WetWidth
average	X WetWidth
std. dev.	SD WetWidth
Length of site reach, distance	Site Length
Thalweg increment, distance	TWIncrement
Thalweg depth,	
count	N TWDepth
average	X TWDepth
std.dev.	SD TWDepth
Bankfull height,	
count	N BFHeight
average	X BFHeight
std. dev.	SD BFHeight
Bankfull depth,	
count	N BFDepth
average	X BFDepth
std. dev.	SD BFDepth
Wetted cross section,	
count	N Wet WxD
average	X Wet WxD
std. dev.	SD Wet WxD
Bankfull cross section,	
count	N BF WxD
average	X BF WxD
std. dev.	SD BF WxD

Metric Category: Substrate

Reported	WHM export ID
Entire reach	
Embeddedness, count	N Embed
Embeddedness, average	X Embed
Embeddedness, std. dev.	SD_Embed
Mid-channel	
Embeddedness, mid-channel, count	N EmbedCenter
Embeddedness, mid-channel, average	X EmbedCenter
Embeddedness, mid-channel, std. dev.	SD_EmbedCenter
Number of all substrates observed, count	N_Substrate
Percent substrate, each diameter category	
Smooth bedrock	PCT BedrockS
Rough bedrock	PCT BedrockR
Pavement (i.e., concrete)	PCT Pavement
Large boulders	PCT_BoulderL
Small boulders	PCT BoulderS
Cobble	PCT_Cobble
Coarse gravel	PCT_GravelC
Fine gravel	PCT_GravelF
Sand	PCT_Sand
Fines	PCT_Fines
Hardpan	PCT_Hardpan
Wood	PCT_Wood
Other	PCT_Other
Percent substrate, diameter categories combined	
Bedrock, Smooth or rough	PCT_Bedrock
Coarse gravel and larger	PCT_GravelCx
Fine gravel and smaller	PCT_GravelFb
Sands and fines	PCT SandFines
	rer_bandrines

37

Metric Category: Riparian Disturbance

Reported	WHM export ID
Human influence plots, count	N_HumanInfluence
Proximity weighted presence, each disturbance type	
Buildings	PWP Bldg
Landfills or trash	PWP Trash
Logging	PWP Log
Mining	PWP Mine
Park or lawn	PWP ^{Lawn}
Pasture, rangeland, or hayfield	PWP Range
Paved road or railroad	PWP Pave
Unpaved road or motor trail	PWP Unpav
Human foot path	PWP_Path
Clearing or lot	PWP_Clear
Pipes, in or out	PWP Pipe
Row crops	PWP_Crop
Wall, dike, or revetment	PWP_Dike
Proximity weighted presence, combined human	
influence types	
All	PWP_All
Agricultural	PWP_Ag
Percent disturbance, by proximity to channel	
At bank, all human-influence types	PCT_BankAny
At bank, agricultural human-influence types	PCT_BankAg
Close to bank, all human influence types	PCT_CloseAny
Close to bank, all human influence types	PCT_CloseAg

38

METRIC CATEGORY: Sinuosity

Group:SinuosityScope:All non-null observations per DCE, entire site reach

Reported: Sinuosity of site reach, index (i)

Definition: (i) index, of deviation from the straight-line, point-to-point distance between the upper and lower ends of the site reach, as the ratio of shortest direct point-to-point aerial transit path to overall length of sinuous watercourse as estimated by the sum of site-level reach sub-segment lengths. Unit = dimensionless.

Reported for protocol = narrow only.

WHM export ID:

(i) Sinuosity

Observation type: Allowed values: Data collection schema:

Maximum observations (DCE), narrow protocol: wide protocol: Minimum reporting qualifiers, narrow protocol: wide protocol: Reporting years (to date): Derived from bearing readings ≥ 1 Observations parallel to thalweg of the site reach sufficient to characterize reach. Site reach length is variable, 150 - 2000 m.

30 not reported

> 20 not reported 2009-2017

Calculation:

Field Methods

SOP #	Method	SOP #	Method
EAP070	Hygiene vs invasive species	EAP115	Densiometer
EAP073	Benthic invertebrates (kick net)	EAP116	Fish cover
EAP095	Water samples	EAP117	Riparian vegetation
EAP105	Site layout, slope & bearings	EAP118	Riparian disturbance
EAP106	Site layout	EAP119	Thalweg profile
EAP107	Coordinates	EAP120	Habitat units
EAP108	In situ water quality	EAP121	Large woody debris
EAP109	Discharge	EAP122	Slope
EAP110	Sediment metals	EAP123	Compass bearings
EAP111	Periphyton	EAP124	Vertebrates (backpack fisher)
EAP112	Bank erosion	Request	Electronic forms management
EAP113	Channel dimensions	n/a	Chemistry sample management
EAP114	Substrate at major transects		

<u>https://fortress.wa.gov/ecy/publications/UIPages/PublicationList.aspx?IndexTypeName=Topic&NameValue=Standard+Operating+Procedure+(SOP)+%e2%80%94+</u> Watershed+Health+Monitoring&DocumentTypeName=Publication

Diagnosis or "Causal Analysis"

Ecology invertebrate data, reported in PSSB https://pugetsoundstreambenthos.org/

				Scores	
Row	Site Code, Location	Year, Project	Fine Sediment Sensitivity Index	Hilsenhoff Biotic Tolerance Index	Metals Tolerance Index
1	SEN06600-HAMM03, Hamma Hamma River	2019, Status and Trends WA Statewide Sentinel Site Monitoring	85	2.3	1.3
2	SEN06600-LITT06, Little Pend Oreille River	2019, Status and Trends WA Statewide Sentinel Site Monitoring	110	3.0	1.8
3	SEN06600-GRIF09, Griffin Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	135	3.3	2.0
4	SEN06600-TWIN02, Twin Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	160	3.9	2.5
5	SEN06600-ELLS01, Ellsworth Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	85	5.5	0.6
6	SEN06600-LAUG07, Laughing Water Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	160	3.1	0.7
7	SEN06600-TRAP08, Trapper Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	180	3.9	1.8
8	SEN06600-UMTA18, Umtanum Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	55	5.6	3.1
9	SEN06600-TWEN05, Twentyfive Mile Creek (Chelan)	2019, Status and Trends WA Statewide Sentinel Site Monitoring	180	4.8	0.4
10	SEN06600-ASOT13, Asotin Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	180	4.1	2.2
11	SEN06600-CUMM10, Cummings Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	140	4.4	2.3
12	SEN06600-DEAD19, Deadman Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	115	2.5	1.2
13	SEN06600-MARB21, Marble Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	150	3.8	0.9
14	SEN06600-POOR22, Poorman Creek	2019, Status and Trends WA Statewide Sentinel Site Monitoring	110	3.4	0.8
15	SEN06600-SULL20, Sullivan Creek, North Fork	2019, Status and Trends WA Statewide Sentinel Site Monitoring	130	3.1	0.6
16	SEN06600-TEAN04, Teanaway River, Middle Fork	2019, Status and Trends WA Statewide Sentinel Site Monitoring	170	4.1	0.8

Example

Data Collection Event Physical/Biological Mi		Metrics	Cher	Chemistry Biological Field Data		Physical Habitat Field Data		Metrics											
Site Verification		E	Bearing		GPS	Position	sitions Habi		abitat Unit	it Bank Din		Dimensions		Catagorias					
Large	Woo	dy Deb	oris	Tł	halwe	g	Densiometer Fish Cover Substrate Human Influence Riparian		rian	Categories									
A0	B	0	C0	DO	D	EO	FO	G0	H0	10	JO	КО	Transects						
Transect		Positio	n	١	Wet [Depth	Bankfu	l Depth	Size	Size Class Results					Embeddedness	Comments			
A0		Left Ba	ank		19 cn	n			Sar	d (0.06 to	2 mm) - g	gritty to la	dybug si	ze			100%		
A0		A-10%	across		25 cn	n			Col	oble (64 to	250 mm)	- tennis b	all to ba	sketball size			0%		
A0		A-20%	across		15 cn	n			Co	urse grave	l (16 to 64	mm) - ma	rble to t	tennis ball size			0%		
A0		A-30%	across		18 cn	n			Sm	all boulde	r (250 to 1	000 mm)	- basket	ball to meterstic	k size		35%		
A0		A-40%	across		10 cn	n			Co	urse grave	l (16 to 64	mm) - ma	rble to t	tennis ball size			0%		
AO		A-50%	across		9 cm				Col	oble (64 to	250 mm)	- tennis b	all to ba	sketball size			75%		
A0		A-60%	across		10 cn	n			Co	Course gravel (16 to 64 mm) - marble to tennis ball size					0%				
A0		A-70%	across		2 cm				Col	Cobble (64 to 250 mm) - tennis ball to basketball size					30%				
AO		A-80%	across		-5 cm	ı			Col	Cobble (64 to 250 mm) - tennis ball to basketball size					25%				
AO		A-90%	across		17 cn	n			Sar	Sand (0.06 to 2 mm) - gritty to ladybug size				100%					
A0		Right I	Bank				0 cm		Fin	e gravel (2	to 16 mn	ı) - ladybu	g to ma	rble size			70%		

Example

Display of Raw Data for DCE -> BIO06600-CHRI01-DCE-2011-0712-10:48

Data Collecti	on Event Physical	/Biological Metrics Cher	mistry Bio	logical Field Data	Physical Habitat	Field Data	letrics		
Physical Biological Categories									
Study ID	Site ID	Data Collection Start Date	Metric Categ	ory Metri	c Subcategory 🔺	Metric Name	Result Value	Method	
WHM_BIO	BIO06600-CHRI01 July 12, 2011		BankQuality	Bank	Instability	N BankInstab	22 count	WHM N BankInstab	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	BankQuality	Bank	Instability	X BankInstab	41.136 %	WHM X BankInstab	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelCrossSection	N BF WxD	10 count	WHM N BF WxD	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelCrossSection	N BFDepth	10 count	WHM N BFDepth	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelCrossSection	N Wet WxD	20 count	WHM N Wet WxD	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelCrossSection	SD BF WxD	3.321 m2	WHM SD BF WxD	
WHM_BIO	BIO06600-CHRI01 July 12, 2011		ChannelDim	ensions Chan	nelCrossSection	SD BFDepth	31.427 cm	WHM SD BFDepth	
WHM_BIO	BIO06600-CHRI01 July 12, 2011		ChannelDime	ensions Chan	nelCrossSection	SD Wet WxD	2.83 m2	WHM SD Wet WxD	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelCrossSection	X BF WxD	12.758 m2	WHM X BF WxD	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDime	ensions Chan	nelCrossSection	X Wet WxD	4.654 m2	WHM X Wet WxD	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDime	ensions Chan	nelDepth	N BFHeight	11 count	WHM N BFHeight	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelDepth	N TWDepth	100 count	WHM N TWDepth	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDime	ensions Chan	nelDepth	SD BFHeight	9.901 cm	WHM SD BFHeight	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelDepth	SD TWDepth	36.925 cm	WHM SD TWDepth	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelDepth	X BFDepth	80.5 cm	WHM X BFDepth	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDime	ensions Chan	nelDepth	X BFHeight	37.455 cm	WHM X BFHeight	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelDepth	X TWDepth	45.75 cm	WHM X TWDepth	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDime	ensions Chan	nelWidth	N BFWidth	21 count	WHM N BFWidth	
WHM_BIO	BIO06600-CHRI01	July 12, 2011	ChannelDim	ensions Chan	nelWidth	N WetWidth	21 count	WHM N WetWidth	
WHM_BIO	D BIO06600-CHRI01 July 12, 2011		ChannelDim	ensions Chan	nelWidth	SD BFWidth	2.744 m	WHM SD BFWidth	

43

Conclusion: Fine Sediment

- Multifaceted approach to characterizing fine sediment impairment is most appropriate
- Monitoring should capture both the physical and biological health of a stream
- Lines of evidence approach may be necessary to characterizing an impairment because a single indicator may not substantiate a fine sediment impairment
- Ecology's Watershed Health Monitoring Program and protocols may be refined to characterize fine sediment

Final Thoughts?

Dissolved Oxygen

- Seasonal criteria approach to DO
- Capturing the diurnal fluctuation in DO

Others?

- Ecology staff will use information/suggestions/feedback gained from SAG meetings to develop preliminary rule language
- Future science advisory group meeting
 - Tentatively February– future doodle poll
 - Voice your thoughts on preliminary rule language
- Public webinar to share preliminary rule language in Spring 2021

Thank you for your participation!

4