Straw Management and Crop Rotation Alternatives to Stubble Burning: Assessing Crop Rotation and Weed Management Options

<u>Co-Principle Investigators</u> Drew Lyon, Weed Scientist Dave Huggins, Soil Scientist Kate Painter, Ag. Economist

Producer incentives for burning stubble include:

- # Facilitating the establishment of the next crop
- # Decreasing incidence of soil-borne disease and weed/volunteer germination
- Decreasing nutrient (e.g. N) tie-up by decomposing cereal residues
- # Positive response of crop growth, yield and economic return

Producer disincentives to burning stubble can be difficult to quantify

#Negative impacts on overall soil organic matter levels **#Loss of nutrients** (N, P, S, K) **#Increased hazard of** soil erosion if burning is combined with too much tillage

Project Objectives

- (1) Initiate evaluation of harvest weed seed control (HWSC) systems that target and destroy weed seeds during or following commercial grain crop harvest.
- (2) Identify and economically assess crop rotations and sequences that benefit from retaining winter wheat residues in direct-seed systems.
- (3) Convey project findings through electronic and print media, field days and conferences.

The Role of Harvest Weed Seed Control in the Management of Herbicide-Resistant Weeds

Drew Lyon – Small Grains Extension & Research, Weed Science

World Class. Face to Face.

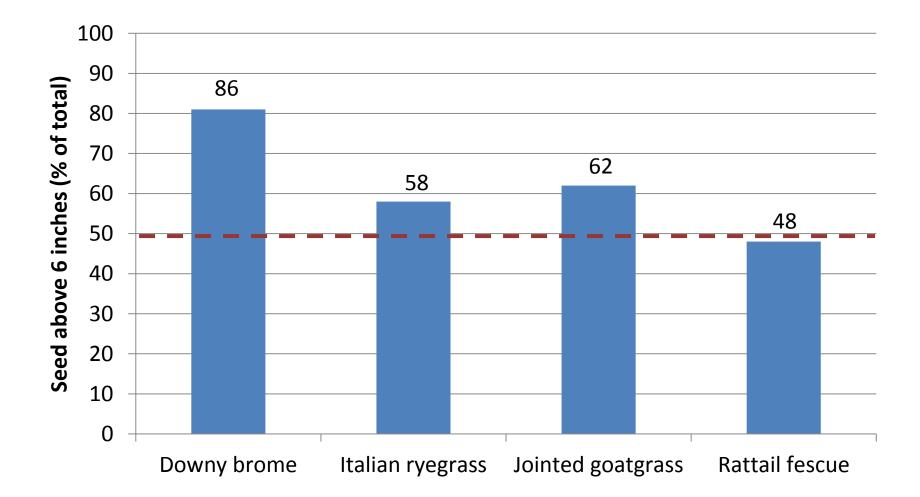
Conservation Farming and Herbicide Resistance

- Direct-seed and reduced tillage systems depend on herbicides for weed control
- Herbicide resistance is a growing problem worldwide and in the Pacific Northwest

Weed Seeds at Harvest

CR9060 New Holland Majority of weed seeds exit in the chaff fraction

Harvest Weed Seed Control


- Biological attribute needed for system to work:
 - mature seed do not shatter before grain harvest, held above cutting bar height

Objective 1

- Description of baryest weed seed control (HWSC) systems that target and destroy weed seeds during or following commercial grain crop harvest. Methods:
 - Study one: determine proportion of weed seed retained above (and below) a low harvester cutting height (6 inches) to determine the proportion of seed that could be collected during harvest.
 - Weed species: Italian ryegrass, jointed goatgrass, rattail fescue and downy brome will be monitored and weed seed samples collected just prior to harvest to determine the proportion of seed retained above a low harvester cutting height (six inches).

Seed Retention at Harvest

Objective 1

- Objective 1. Initiate evaluation of harvest weed seed control (HWSC) systems that target and destroy weed seeds during or following commercial grain crop harvest. Methods:
 - Study two: evaluate burning with three treatments: full combine header width spreading of straw, chaff, and weed seed with (1) and without (2) fall burning; and windrowing of straw, chaff and any weed seeds directly behind combine coupled with field burning of the windrow (3).
 - Emergence of Italian ryegrass evaluated for each treatment.

Narrow Windrow Burning

Concentrate residues at harvest Burn residues in autumn

Narrow Windrow Burning

99% control of *Lolium* and *Raphanus* Most Western Australian growers use this technique

Pullman Study Windrows to be Burned

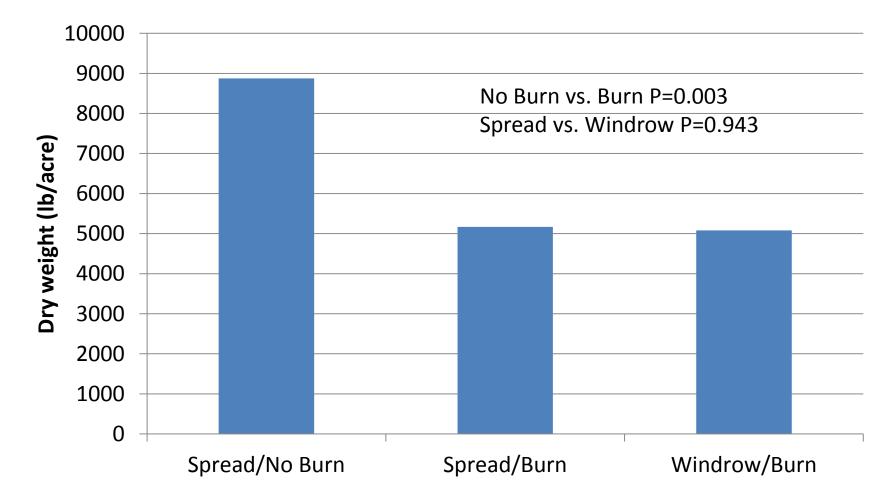
Weed Seed Tray Placement

Weed Seed Tray Prior to Burn

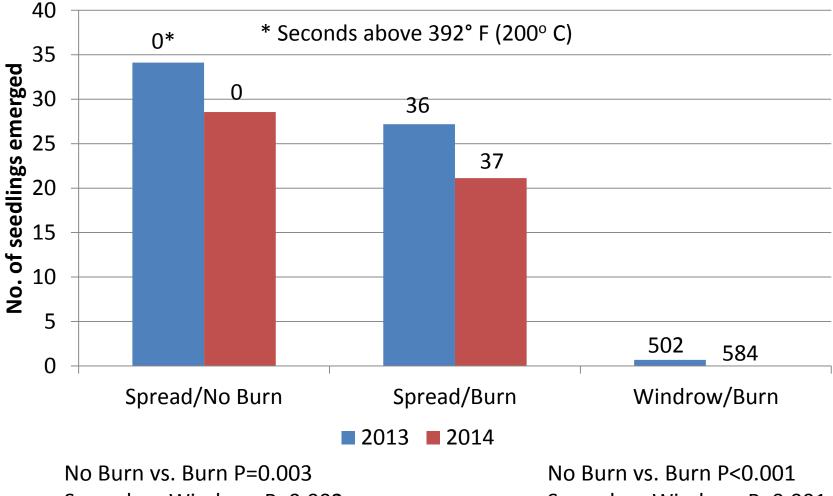
Thermocouple Wires & Data Logger

Burning Windrows

Burning All Crop Residue


Three Weeks After Burning

Collecting Crop Residues


Crop Residue After Burning Averaged Across Years

Germinating Italian Ryegrass After Burning

Italian Ryegrass Seed Survival

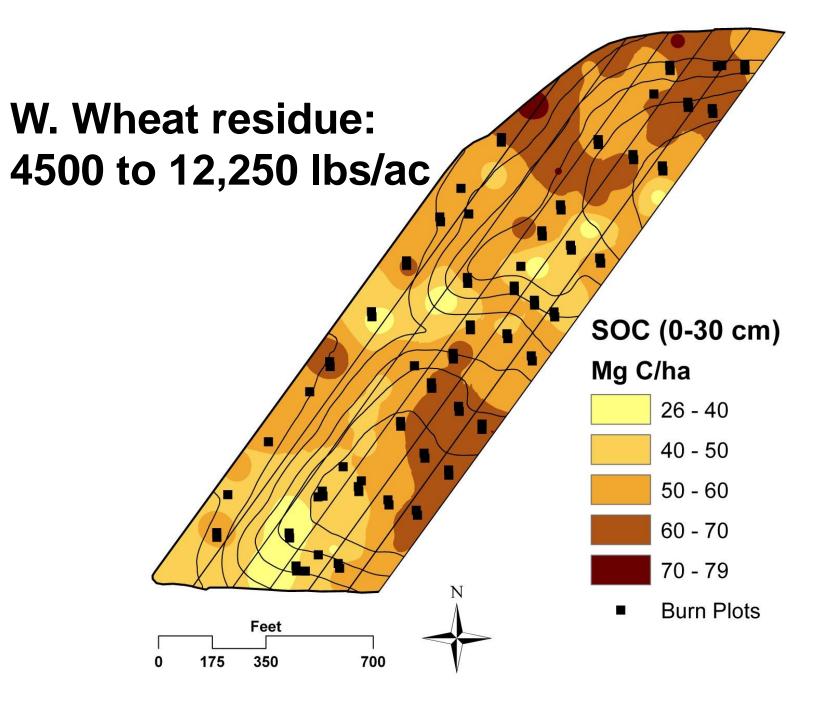
Spread vs. Windrow P=0.002

Spread vs. Windrow P<0.001

Weeds have the potential to evolve resistance to all forms of weed control

Low weed densities are the best insurance against resistance evolution

Project Objective (2)


#(2) Identify and economically assess crop rotations and sequences that benefit from retaining winter wheat residues in direct-seed systems

Cook Agronomy Farm Direct Seed and Precision Farming Systems

Develop principles and strategies that reduce risk, increase profits and improve environmental quality

Crop Yields (Obj. 2)

	2010 Harvest		2012 Harvest		2014 Harvest	
Crop	Control	Fall Burn	Control	Fall Burn	Control	Fall Burn
Winter Wheat following W. Wheat, (bu/ac)	82a	82a	72b	82a	71a	73a
Garbanzo Bean Yield following W. Wheat, (Ibs/ac)	1624a	1634a	1934a	2008a	1384a	1347a
Spring Barley Yield following W. Wheat, (Ibs/ac)	4733b	5234a	4059b	4415a	3139b	3582a
Spring Wheat Yield following W. Wheat (bu/ac)	59a	57a	51b	60a	50a	49a

Project Objectives (3)

#(3) Convey project findings through electronic and print media, field days, conferences and research site tours

Straw Management and Crop Rotation Alternatives to Stubble Burning: Outreach

- **November 11, 2014** Annual Meeting of the Washington Crop Improvement Association in Airway Heights, WA
- December 4, 2014 Hermiston Farm Fair in Hermiston, OR
- January 6, 2015 Harvest Ag Grower Meeting in Walla Walla, WA
- January 13, 2015 Walla Wall County Extension Cereal Seminar in Walla Walla, WA
- **February 5, 2015** Pacific Northwest Farm Forum in Spokane, WA
- February 5, 2015 Wilbur-Ellis Grower Meeting in Pullman, WA

Items to Complete

- Continue economic assessment
- Complete final report
- Continue outreach efforts to communicate project findings
- Complete scientific publication of results
 - Advanced draft "Residue Burning in an Annual Cropping System I. Nutrient Cycling and Crop Development" (plan to submit by end of June, 2015).
 - Assembled bibliography on burning and related issues: currently 148 references.

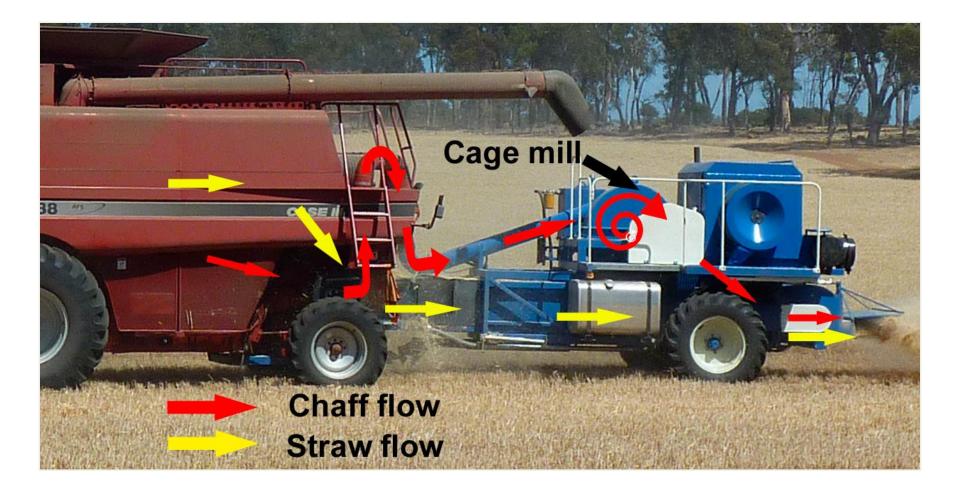
Alternatives for Managing Wheat Straw:

Assessing Soil Water Storage, Micronutrient Status and Removal and Weed Management

<u>Co-Principle Investigators</u> Wayne Thompson, Regional Extension Agronomist Drew Lyon, Weed Scientist Dave Huggins, Soil Scientist

Cooperators: Dwelley Jones, Walla Walla County Producer Greg and Gary Ferrel, Walla Walla County Producers

Alternatives to Field Burning Chaff Collection


Up to 85% of Lolium and Raphanus seed collected and removed

Glenvar Bale Direct System

Up to 95% of *Lolium* seed collected and removed in baled harvest residues

Harrington Seed Destructor

Comparison of HWSC systems

WA wheat belt 2010

Replicated treatments at 12 sites over 3,000 km Demonstration of HWSC systems Autumn emergence counts

Lolium emergence - autumn 2012

Averaged across 13 sites SE Aust.

Treatment	Reduction in <i>Lolium</i> emergence (%)
HSD	58
Chaff cart	55
	55
Narrow windrow burn	55
LSD (P=0.05)	9

Lolium emergence -High density site

Treatment	<i>Lolium</i> density (plants/m ²)	Reduction in <i>Lolium</i> emergence (%)
Control	238	
HSD	148	38
Chaff cart	161	32
Windrow burn	170	29
LSD (P=0.05)		31

Assessment of HWSC

Systems deliver the same result

57

New Project Objectives

- Assess straw residue removal on:
- (1) soil water storage; (2) micronutrient removal; and (3) several troublesome grassy weeds.
- (4) Convey project findings through electronic and print media, field days, conferences and research site tours.

Objective 1, Methods

Description of the state of

Methods:

- Soil water status trials will be located in Walla Walla County within the collaborating farmer's field and repeated on the PCFS in Pullman.
- Within-field trial positions will be established prior to winter wheat harvest with treatments that consist of straw residue removal by direct baling, fall burn, windrow burn and no burn under both weed-free and weed-infested conditions.
- Microclimate stations coupled with field sampling will be used to monitor soil water, temperature to evaluate evaporative water loss relative to evapotranspiration rates of the crop.
- Crop samples will be assessed for biomass production and grain yield.

Objective 2, Methods

- Description of the status and removal by winter wheat residues in direct-seed systems (micronutrient status and removal) and straw ash (Thompson, Huggins).
- **#** Methods:
 - Same field trials/treatments as in Obj. 1.
 - Composite soil samples and crop yield/residue samples will be gathered and assessed for micronutrient status.
 - Micronutrient removal and crop performance (micronutrient status and yield) will be evaluated for all treatments.

Objective 3, Methods

- Description: Boostime and Section 2. Continue evaluation of HWSC systems that capture weed seeds during or destroy following commercial grain crop harvest (Lyon, Thompson).
- **#** Methods:
 - Study one: determine proportion of weed seed retained above (and below) a low harvester cutting height (6 inches) to determine the proportion of seed that could be collected during harvest.
 - Weed species: Italian ryegrass, jointed goatgrass, rattail fescue and downy brome will be monitored and weed seed samples collected just prior to harvest to determine the proportion of seed retained above a low harvester cutting height (six inches).

Objective 3, Methods

Description of HWSC systems that capture weed seeds during or destroy following commercial grain crop harvest (Lyon, Thompson).

Methods:

- Study two: evaluate burning with four treatments: full combine header width spreading of straw, chaff, and weed seed with (1) and without (2) fall burning; windrowing of straw, chaff and any weed seeds directly behind combine coupled with field burning of the windrow (3); direct bale system (4)
 - Emergence of weed species and volunteer winter wheat will be monitored in the fall and following spring to assess treatment differences in population densities.

Objective 4 (Extension)

- Description of the second s
 - As research results become available, many opportunities for presentations at field days, conferences and research site tours will occur.
 - In addition, we will submit a minimum of one manuscript to a peer-reviewed journal, for example, Soil Science Society of America Journal, to publish research from the DOE project combining these results with the experiments just completed.

Proposed Budget			
Salaries - 00	\$	4,951	
Wages - 01	\$	13,464	
Personal Service Contracts - 02	\$	的观察学	
Goods/Services - 03	\$	24,900	
Travel - 04	\$	5,000	
Equipment (Capital) - 06	\$	会公司运行	
Benefits - 07	\$	1,989	
Stipends -08	\$	网络阿兰尔	
F&A - 13	\$	14,329	
Subawards - 14	\$		
Equipment (Non-Capital) - 16	\$		
Total	\$	64,633	

Questions?

