Straw Management and Crop Rotation Alternatives to Stubble Burning: Assessing Economic and Environmental Trade-offs

Principle Investigators

Dave Huggins, Soil Scientist
Tim Paulitz, Plant Pathologist
Kate Painter, Ag. Economist
Drew Lyon, Weed Science

Project Objectives

- Identify and economically assess crop rotations and sequences that benefit from retaining winter wheat residues in direct-seed systems
- Document effects of wheat straw management on weed seed survival
- Convey project findings through electronic and print media, field days, conferences and research site tours.

		Fall		Fall
	Control	Burn	Control	Burn
Crop	2012	2012	2014	2014
Winter Wheat Yield following Winter Wheat, (bu/ac)	82a	82a	7 1a	73a
Spring Wheat Yield following Winter Wheat (bu/ac)	59a	57a	50 a	48a
Garbanzo Bean Yield following Winter Wheat, (lbs/ac)	1624a	1634a	1381a	1343a
Spring Barley Yield following Winter Wheat, (lbs/ac)	4733b	5234 a	3132a	3574a

Conservation Farming and Herbicide Resistance

- Direct-seed and reduced tillage systems depend on herbicides for weed control
- Herbicide resistance is a growing problem worldwide and in the Pacific Northwest

History of Herbicide Resistance

Weed Seeds at Harvest

Narrow Windrow Burning

Concentrate residues at harvest Burn residues in autumn

Narrow Windrow Burning

99% control of *Lolium* and *Raphanus*Most Western Australian growers use this technique

Harvest Weed Seed Control

- Biological attribute needed for system to work:
 - mature seed do not shatter before grain harvest, held above cutting bar height

Seed Retention at Harvest

Pullman Study Windrows to be Burned

Weed Seed Tray Placement

Weed Seed Tray Prior to Burn

Thermocouple Wires & Data Logger

Burning Windrows

Burning All Crop Residue

Three Weeks After Burning

Collecting Crop Residues

Crop Residue After Burning Averaged Across Years

Germinating Italian Ryegrass After Burning

Italian Ryegrass Seed Survival

Spread vs. Windrow P<0.001

Spread vs. Windrow P=0.002

Alternatives to Field Burning Chaff Collection

Up to 85% of Lolium and Raphanus seed collected and removed

Glenvar Bale Direct System

Up to 95% of *Lolium* seed collected and removed in baled harvest residues

Direct Bale System – Walla Walla

Harrington Seed destructor

Based on a cagemill used in the coal industry

Ray Harrington

Harrington Seed Destructor

Lolium emergence - autumn 2012

Averaged across 13 sites SE Aust.

Treatment	Reduction in <i>Lolium</i> emergence
	(%)
HSD	58
Chaff cart	55
Narrow windrow burn	55
LSD (P=0.05)	9

Weeds have the potential to evolve resistance to all forms of weed control

Low weed densities are the best insurance against resistance evolution

