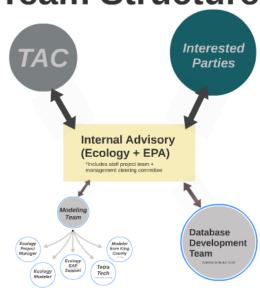



#### PLA Project Team Updates

#### **Team Structure**



Bo Li, PhD, PE


Environmental Engineer Department of Ecology NWRO Water Quality Program

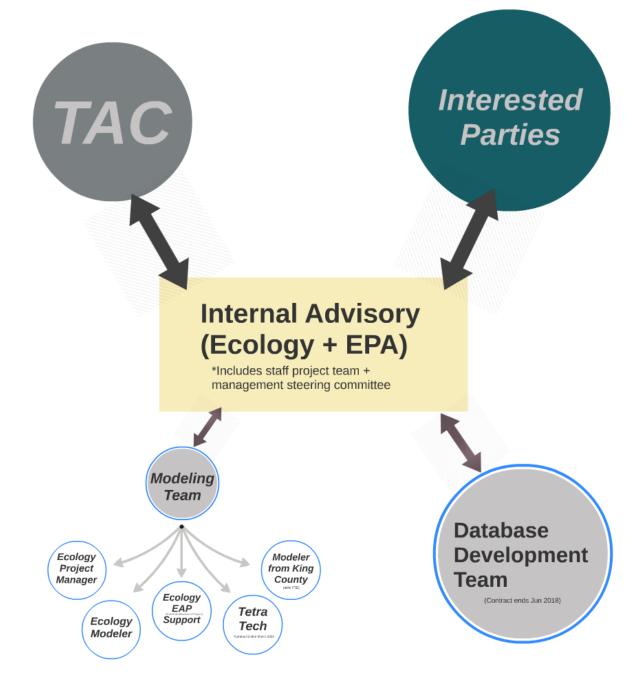
#### **Project Timeline**

| 3315   | 2016  | 2017 | 2016 | 2316 | 3024      | 201 | 2013   | 2011          | 2021 |
|--------|-------|------|------|------|-----------|-----|--------|---------------|------|
| \$78 N | P 500 |      | 944  |      | Sear gire |     | J 11 - | No. of Bridge |      |

# PLA Project Team Updates

#### **Team Structure**




#### Bo Li, PhD, PE

Environmental Engineer
Department of Ecology
NWRO Water Quality Program

#### **Project Timeline**

| 2015                  |                  | 2016                  | 2017  | 21              | 018            | 201              | 9 | 2020            | 2021  | 2022           | 2023            | 2024           |
|-----------------------|------------------|-----------------------|-------|-----------------|----------------|------------------|---|-----------------|-------|----------------|-----------------|----------------|
| Technical<br>Approach | Modeling<br>CAPP | 1987<br>Fydrodynamics | _     |                 | CAPP<br>Update | LISPE Tool c     |   | Becausing Water | Model | Feed Web Model | I valuete Mana) | ement Scenario |
|                       |                  |                       | David | obose<br>bomant |                | olifool<br>aling |   |                 |       |                |                 |                |
|                       |                  |                       |       | ening<br>Hysik  |                |                  |   |                 |       |                |                 |                |

# **Team Structure**





Ecology Project Manager

**Ecology Modeler** 

Ecology
EAP
(Environmental Assessment Program)
Support

Modeler from King County

(40% FTE)

Tetra Tech

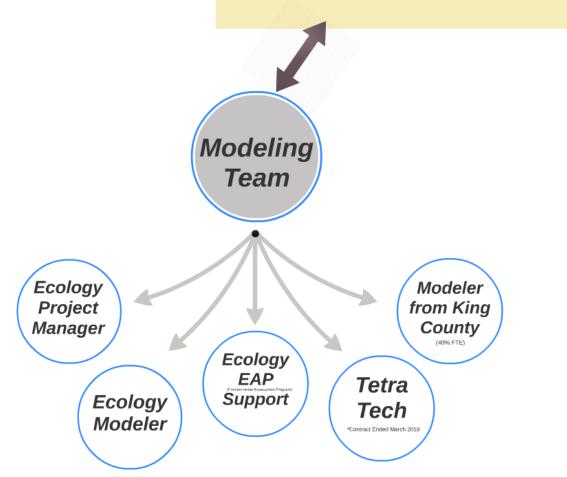
\*Contract Ended March 2018

# Tetra Tech

\*Contract Ended March 2018

# Modeler from King County

(40% FTE)


# Modeling Team

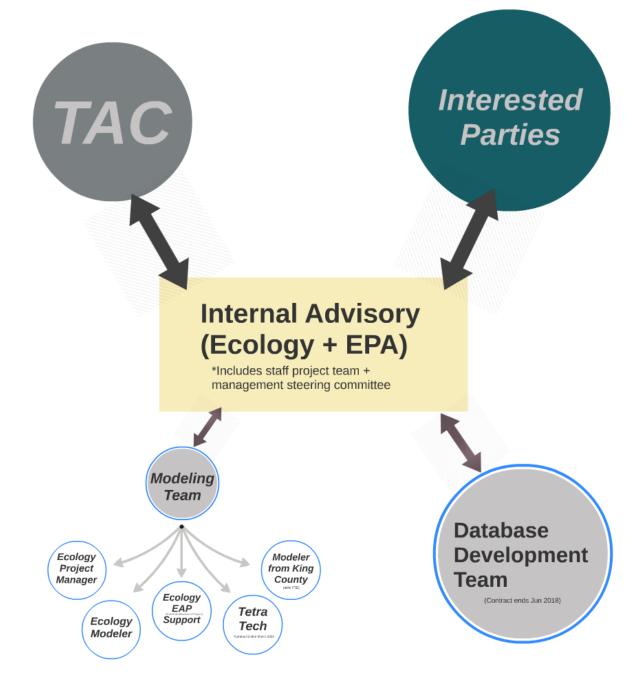
# Database Development Team

(Contract ends Jun 2018)

## Internal Advisory (Ecology + EPA)

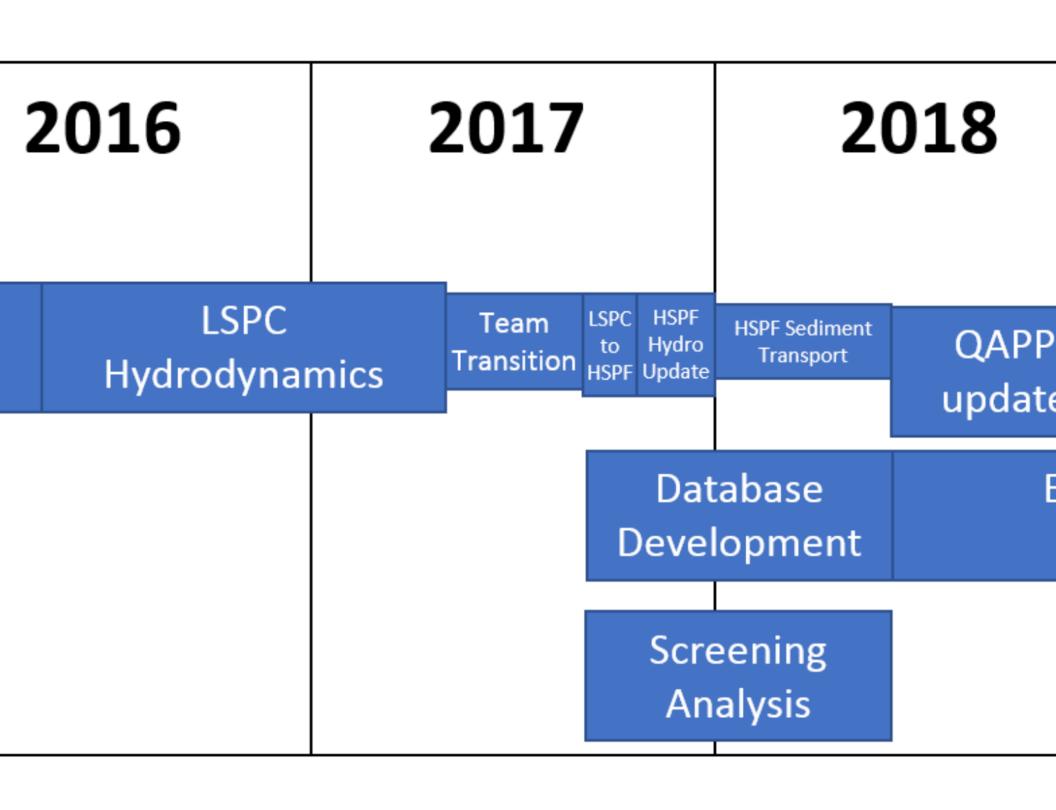
\*Includes staff project team + management steering committee




#### Database Development Team

(Contract ends Jun 2018)

# Internal Advisory (Ecology + EPA)


\*Includes staff project team + management steering committee

# **Team Structure**



# **Project Timeline**


| 2015                  |                 | 2016 | 2017                                 | 2018                                      | 2019             | 2020            | 2021    | 2022           | 2023           | 2024            |
|-----------------------|-----------------|------|--------------------------------------|-------------------------------------------|------------------|-----------------|---------|----------------|----------------|-----------------|
| Technical<br>Approach | Modelir<br>QAPP |      | Team LSPC HSPF to Typide HSPF Update | HSPF Sediment<br>Transport QAPP<br>update | HSPF Toxic       | Receiving Water | r Model | Food Web Model | Evaluate Manag | gement Scenario |
|                       |                 |      |                                      | tabase Em                                 | pirical<br>ading |                 |         |                |                |                 |
|                       |                 |      |                                      | eening<br>alysis                          |                  |                 |         |                |                |                 |



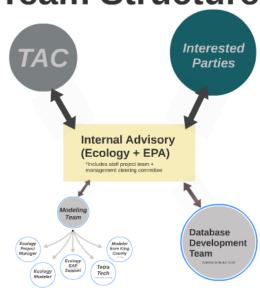
HSPF Hydro Update

HSPF Sediment Transport

QA



| 2019 | 2020            | 2021  |
|------|-----------------|-------|
| oxic | Receiving Water | Model |
|      |                 |       |
|      |                 |       |
|      |                 |       |
|      |                 |       |
|      |                 |       |

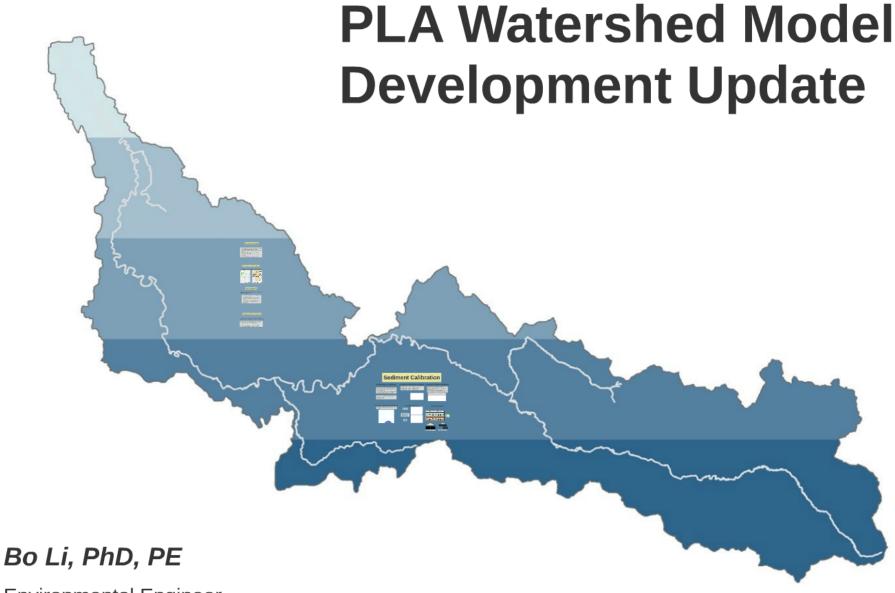

| 2022           | 2023           | 2024           |
|----------------|----------------|----------------|
| Food Web Model | Evaluate Manag | ement Scenaric |
|                |                |                |
|                |                |                |
|                |                |                |

# **Project Timeline**

| 2015      |          | 2016       | 2017                                     | 2018                                | 2019             | 2020           | 2021    | 2022           | 2023           | 2024            |
|-----------|----------|------------|------------------------------------------|-------------------------------------|------------------|----------------|---------|----------------|----------------|-----------------|
| Technical | Modeling |            | Team LSPC HSPF Transition HspF User HSPF | HSPF Sediment<br>Transport QAPP     | HSPF Toxic       | Receiving Wate | r Model | Food Web Model | Evaluate Manag | gement Scenario |
| Approach  | QAPP     | Hydrodynai | Da'                                      | update<br>tabase Emi<br>lopment Loa | pirical<br>ading |                |         |                |                |                 |
|           |          |            |                                          | eening<br>nalysis                   |                  |                |         |                |                |                 |

# PLA Project Team Updates

#### **Team Structure**



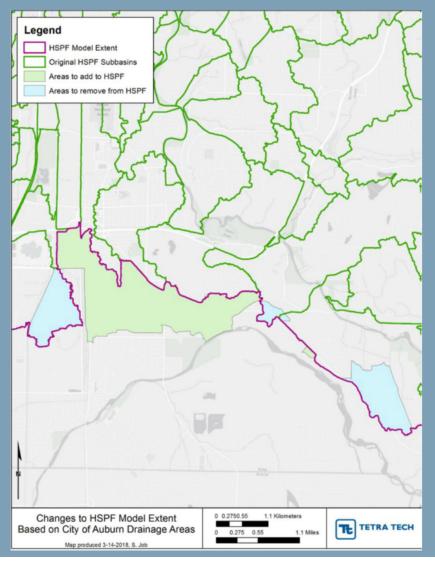

#### Bo Li, PhD, PE

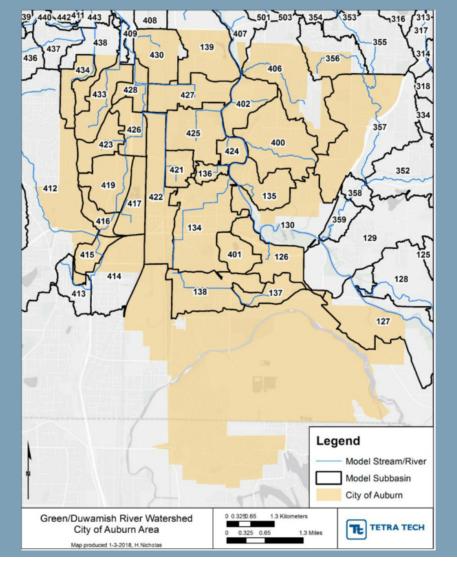
Environmental Engineer
Department of Ecology
NWRO Water Quality Program

#### **Project Timeline**

| 2015                  |                  | 2016                  | 2017  | 21              | 018            | 201              | 9 | 2020            | 2021  | 2022           | 2023            | 2024           |
|-----------------------|------------------|-----------------------|-------|-----------------|----------------|------------------|---|-----------------|-------|----------------|-----------------|----------------|
| Technical<br>Approach | Modeling<br>CAPP | 1987<br>Fydrodynamics | _     |                 | CAPP<br>Update | LISPE Tool c     |   | Becausing Water | Model | Feed Web Model | I valuete Mana) | ement Scenario |
|                       |                  |                       | David | obose<br>bomant |                | olifool<br>aling |   |                 |       |                |                 |                |
|                       |                  |                       |       | ening<br>Hysik  |                |                  |   |                 |       |                |                 |                |




Environmental Engineer
Department of Ecology
NWRO Water Quality Program


#### **Conversion to HSPF**

- Renumbered delineated catchments and reaches from six digit codes to three digit codes.
- Renumbered upland Hydrologic Response Units (HRUs).
- Implemented hydrology parameters from the calibrated LSPC models.
- Transferred key components of the hydrology simulation.
- Extended HSPF through Water Year 2016.

## **Hydrology Model Updates**

#### Subbasin and reach refinements





## **Reach Hydraulics**

Generated new Functional Tables using a variety of quantitative approaches:

- Extracting information from calibrated HEC-RAS and SWMM models
- Representing large infiltration basins explicitly
- Using USGS and King County Gage rating tables
- Implementing the standard BASINS approach paired with regional hydraulic geometry relationships

## **Changes to Flow Calibration**

#### In general, the changes are small. (Table 2-1)

Changes caused by switching from LSPC to HSPF.

Larges changes for Green River near Auburn

Changes caused by model revisions for Auburn.

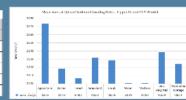
Most notable changes at Mill Creek stations

# **Sediment Calibration**

#### 1. Boundary conditions

Upstream boundary: Howard Hanson Dam.

- Tacoma Public Utilities withdrawals data
- USGS Gage data
- derived from a regression to estimate TSS concentration from observed daily flow

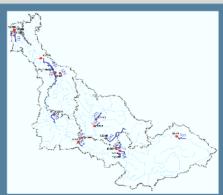

Outflow from Lake Youngs enters upper Little Soos Creek

-TSS = 1 mg/L

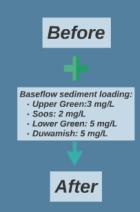
#### 2. Upland Sediment Loading 3. Reach Sediment Balance

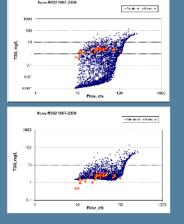
Updated upland sediment simulation so that sediment yields for each land use match expectations to local and regional data.

| Table 3-1. Reference Upland Sediment Loading Rates |                            |      |         |  |  |  |
|----------------------------------------------------|----------------------------|------|---------|--|--|--|
| Land Use                                           | Loading Rates (tons/ac/yr) |      |         |  |  |  |
| Land Use                                           | Minimum                    | Mean | Maximum |  |  |  |
| Agriculture                                        | 0.02                       | 0.07 | 0.15    |  |  |  |
| Commercial and industrial                          | 0.36                       | 0.38 | 0.38    |  |  |  |
| I creed                                            | 0.00                       | 0.00 | 0.15    |  |  |  |
| High Donnity Residential                           | 0.03                       | 0.13 | 0.19    |  |  |  |
| Low Donsity Residential                            | 0.00                       | 0.08 | 0.17    |  |  |  |




- Set initial shear stress scour and deposition thresholds based on an analysis of tau distributions individually for each reach.
- Examine long term simulation of deposition and scour in each reach and tune until the behavior matches physically realistic expectation. (bed depth)


| Model       | Change in Reach Bed Depth (ft) |       |         |  |  |
|-------------|--------------------------------|-------|---------|--|--|
| Model       | Minimum                        | Mean  | Maximum |  |  |
| Upper Green | -0.10                          | -0.01 | 0.02    |  |  |
| Soos        | -0.40                          | -0.03 | 0.05    |  |  |
| Lower Green | -0.47                          | -0.03 | 0.19    |  |  |
| Duwamish    | -0.34                          | -0.02 | 0.00    |  |  |


#### 4. Instream Sediment Calibration

Compare instream simulated and observed sediment concentrations and loads and refine sediment parameters as needed to achieve an acceptable fit



#### Low Flow Calibration





#### **Calibration Updates**

| Model Component    | Very Good | Good     | Fair     | Poor  |
|--------------------|-----------|----------|----------|-------|
| Suspended Sediment | ≤ 20%     | 20 - 30% | 30 - 45% | > 45% |

| Model Reach | HSPF Model  | Monitoring Site<br>ID(s) | TSS Sample<br>Count | Start Date | End Date   | Calibration<br>Perfomance |
|-------------|-------------|--------------------------|---------------------|------------|------------|---------------------------|
| 106         | Upper Green | 9871                     | 245                 | 1/20/1997  | 9/11/2017  | Very Good                 |
| 118         | Upper Green | 12307                    | 130                 | 1/14/2004  | 12/9/2015  | Good                      |
| 129         | Upper Green | 3196                     | 73                  | 1/14/2004  | 12/9/2015  | Good                      |
| 240         | Upper Green | 12300                    | 131                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 253         | Upper Green | 12299, 12312             | 98                  | 1/14/2004  | 12/9/2015  | Very Good                 |
| 303         | Soos        | 12313                    | 93                  | 1/14/2004  | 12/9/2015  | Good                      |
| 332         | Soos        | 3399                     | 125                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 344         | 500s        | 12308                    | 93                  | 1/14/2004  | 12/9/2015  | Poor                      |
| 358         | Soos        | 12306                    | 128                 | 1/14/2004  | 11/12/2015 | Very Good                 |
| 153         | Lower Green | 12301, 9865, 12297       | 374                 | 1/12/1997  | 9/11/2017  | Fair                      |
| 409         | Lower Green | 12304                    | 97                  | 1/14/2004  | 12/9/2015  | Good                      |
| 550         | Duwamish    | 12298                    | 130                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 604         | Duwamish    | 12296                    | 58                  | 1/14/2004  | 12/3/2008  | Good                      |
| 710         | Duwamish    | 12309, 12556             | 251                 | 1/15/2004  | 12/9/2015  | Poor                      |
| 711         | Duwamish    | 12314                    | 58                  | 1/14/2004  | 12/3/2008  | Fair                      |

Very Good: 5 Good: 6 Fair: 2 Poor:2

|           | Morare                   | Velidorium 1997-3886 | Calibration 2007-30-0 |
|-----------|--------------------------|----------------------|-----------------------|
|           | Greet                    | 34                   | 59                    |
|           | Convenient Passage Floor | 962 6 FBs            | TF 85%                |
|           | COYOFE IS NO FINESS BYY. | 08129                | -1.19%                |
|           | Look Nation Con-         | 606 A 265<br>-1 2775 | 396.69%               |
| Owner 2.5 |                          | 100                  |                       |
| ₩         | whe hadrana              |                      |                       |

| Name of Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No lideratory 100 C 3 State | Called to 130° 3011 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|
| Canni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                          | 177                 |
| Concentration Area (per East)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 400.0                       | 46.775              |
| Contract on Mindle Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.4                        | F.W.                |
| Lond Contigue Torre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +28,90%<br>9,200            | -845%<br>2470       |
| Decamous Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8450                        | 45.100              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                     |
| de la constitución de la constit | W.   3                      | tation of           |

# 1. Boundary conditions

Upstream boundary: Howard Hanson Dam.

- Tacoma Public Utilities withdrawals data
- USGS Gage data
- derived from a regression to estimate TSS concentration from observed daily flow

Outflow from Lake Youngs enters upper Little Soos Creek

-TSS = 1 mg/L

# 2. Upland Sediment Loading

Updated upland sediment simulation so that sediment yields for each land use match expectations to local and regional data.

Table 3-1. Reference Upland Sediment Loading Rates

| Land Use                  | Loading Rates (tons/ac/yr) |      |         |  |
|---------------------------|----------------------------|------|---------|--|
| Land Ose                  | Minimum                    | Mean | Maximum |  |
| Agriculture               | 0.02                       | 0.07 | 0.15    |  |
| Commercial and industrial | 0.36                       | 0.36 | 0.36    |  |
| Forest                    | 0.00                       | 0.03 | 0.15    |  |
| High Density Residential  | 0.03                       | 0.13 | 0.19    |  |
| Low Density Residential   | 0.00                       | 0.08 | 0.17    |  |

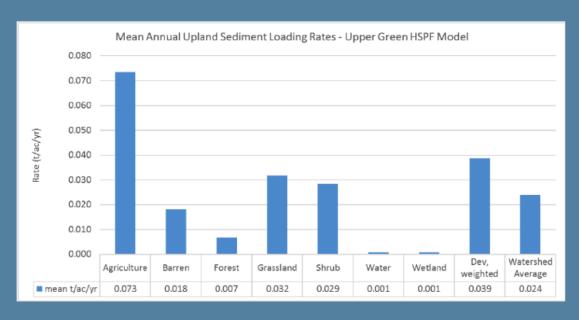
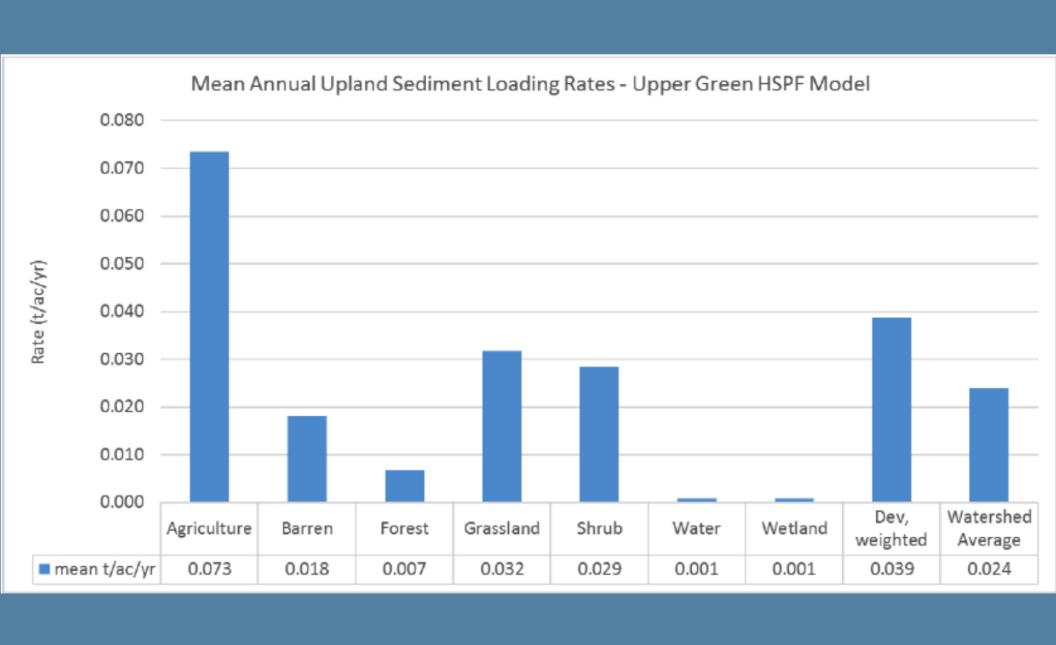
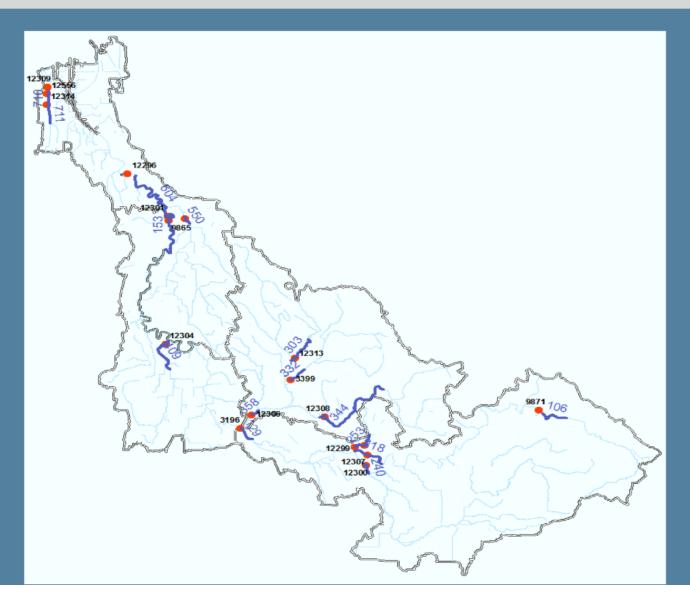




Table 3-1. Reference Upland Sediment Loading Rates

| Land Use                  | Loading Rates (tons/ac/yr) |      |         |  |
|---------------------------|----------------------------|------|---------|--|
| Land USE                  | Minimum                    | Mean | Maximum |  |
| Agriculture               | 0.02                       | 0.07 | 0.15    |  |
| Commercial and industrial | 0.36                       | 0.36 | 0.36    |  |
| Forest                    | 0.00                       | 0.03 | 0.15    |  |
| High Density Residential  | 0.03                       | 0.13 | 0.19    |  |
| Low Density Residential   | 0.00                       | 0.08 | 0.17    |  |




# 3. Reach Sediment Balance

- Set initial shear stress scour and deposition thresholds based on an analysis of tau distributions individually for each reach.
- Examine long term simulation of deposition and scour in each reach and tune until the behavior matches physically realistic expectation. (bed depth)

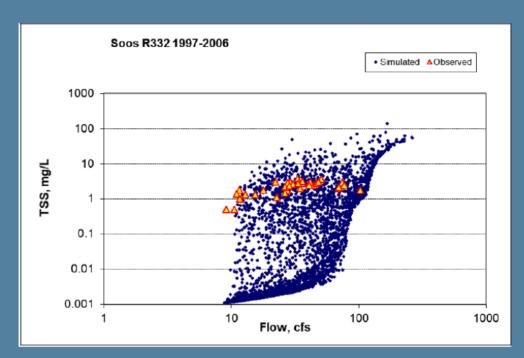
| Model       | Change in Reach Bed Depth (ft) |       |         |  |
|-------------|--------------------------------|-------|---------|--|
| Wodei       | Minimum                        | Mean  | Maximum |  |
| Upper Green | -0.10                          | -0.01 | 0.02    |  |
| Soos        | -0.40                          | -0.03 | 0.05    |  |
| Lower Green | -0.47                          | -0.03 | 0.19    |  |
| Duwamish    | -0.34                          | -0.02 | 0.00    |  |

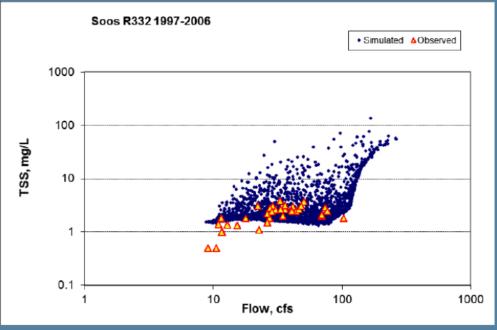
#### 4. Instream Sediment Calibration

Compare instream simulated and observed sediment concentrations and loads and refine sediment parameters as needed to achieve an acceptable fit.



#### **Low Flow Calibration**


#### **Before**




#### Baseflow sediment loading:

- · Upper Green:3 mg/L
- · Soos: 2 mg/L
- · Lower Green: 5 mg/L
- · Duwamish: 5 mg/L







# Calibration Updates

| Model Component    | Very Good | Good     | Fair     | Poor  |
|--------------------|-----------|----------|----------|-------|
| Suspended Sediment | ≤ 20%     | 20 - 30% | 30 - 45% | > 45% |

| h | HSPF Model  | Monitoring Site<br>ID(s) | TSS Sample<br>Count | Start Date | End Date  | Calibration<br>Perfomance |
|---|-------------|--------------------------|---------------------|------------|-----------|---------------------------|
|   | Upper Green | 9871                     | 246                 | 1/20/1997  | 9/11/2017 | Very Good                 |
|   | Upper Green | 12307                    | 130                 | 1/14/2004  | 12/9/2015 | Good                      |
|   | Upper Green | 3196                     | 73                  | 1/14/2004  | 12/9/2015 | Good                      |
|   | Upper Green | 12300                    | 131                 | 1/14/2004  | 12/9/2015 | Very Good                 |
|   | Upper Green | 12299, 12312             | 98                  | 1/14/2004  | 12/9/2015 | Very Good                 |
|   | Soos        | 12313                    | 93                  | 1/14/2004  | 12/9/2015 | Good                      |

Ve

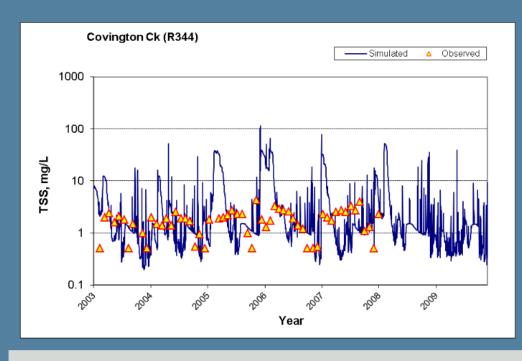
|  |  | Suspended Sediment | ≤ 20% | 20 - 30% | 30 - 45% |
|--|--|--------------------|-------|----------|----------|
|--|--|--------------------|-------|----------|----------|

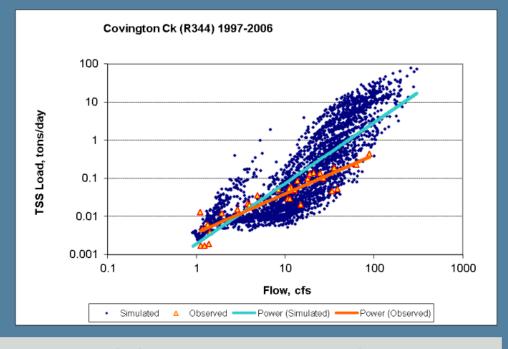
| Model Reach | HSPF Model  | Monitoring Site<br>ID(s) | TSS Sample<br>Count | Start Date | End Date   | Calibration<br>Perfomance |
|-------------|-------------|--------------------------|---------------------|------------|------------|---------------------------|
| 106         | Upper Green | 9871                     | 246                 | 1/20/1997  | 9/11/2017  | Very Good                 |
| 118         | Upper Green | 12307                    | 130                 | 1/14/2004  | 12/9/2015  | Good                      |
| 129         | Upper Green | 3196                     | 73                  | 1/14/2004  | 12/9/2015  | Good                      |
| 240         | Upper Green | 12300                    | 131                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 253         | Upper Green | 12299, 12312             | 98                  | 1/14/2004  | 12/9/2015  | Very Good                 |
| 303         | Soos        | 12313                    | 93                  | 1/14/2004  | 12/9/2015  | Good                      |
| 332         | Soos        | 3399                     | 125                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 344         | Soos        | 12308                    | 93                  | 1/14/2004  | 12/9/2015  | Poor                      |
| 358         | Soos        | 12306                    | 128                 | 1/14/2004  | 11/12/2015 | Very Good                 |
| 153         | Lower Green | 12301, 9865, 12297       | 374                 | 1/12/1997  | 9/11/2017  | Fair                      |
| 409         | Lower Green | 12304                    | 97                  | 1/14/2004  | 12/9/2015  | Good                      |
| 550         | Duwamish    | 12298                    | 130                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 604         | Duwamish    | 12296                    | 58                  | 1/14/2004  | 12/3/2008  | Good                      |
| 710         | Duwamish    | 12309, 12556             | 251                 | 1/15/2004  | 12/9/2015  | Poor                      |
| 711         | Duwamish    | 12314                    | 58                  | 1/14/2004  | 12/3/2008  | Fair                      |

## **Calibration Updates**

| Model Component    | Very Good | Good     | Fair     | Poor  |
|--------------------|-----------|----------|----------|-------|
| Suspended Sediment | ≤ 20%     | 20 - 30% | 30 - 45% | > 45% |

| Model Reach | HSPF Model  | Monitoring Site<br>ID(s) | TSS Sample<br>Count | Start Date | End Date   | Calibration<br>Perfomance |
|-------------|-------------|--------------------------|---------------------|------------|------------|---------------------------|
| 106         | Upper Green | 9871                     | 246                 | 1/20/1997  | 9/11/2017  | Very Good                 |
| 118         | Upper Green | 12307                    | 130                 | 1/14/2004  | 12/9/2015  | Good                      |
| 129         | Upper Green | 3196                     | 73                  | 1/14/2004  | 12/9/2015  | Good                      |
| 240         | Upper Green | 12300                    | 131                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 253         | Upper Green | 12299, 12312             | 98                  | 1/14/2004  | 12/9/2015  | Very Good                 |
| 303         | Soos        | 12313                    | 93                  | 1/14/2004  | 12/9/2015  | Good                      |
| 332         | Soos        | 3399                     | 125                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 344         | Soos        | 12308                    | 93                  | 1/14/2004  | 12/9/2015  | Poor                      |
| 358         | Soos        | 12306                    | 128                 | 1/14/2004  | 11/12/2015 | Very Good                 |
| 153         | Lower Green | 12301, 9865, 12297       | 374                 | 1/12/1997  | 9/11/2017  | Fair                      |
| 409         | Lower Green | 12304                    | 97                  | 1/14/2004  | 12/9/2015  | Good                      |
| 550         | Duwamish    | 12298                    | 130                 | 1/14/2004  | 12/9/2015  | Very Good                 |
| 604         | Duwamish    | 12296                    | 58                  | 1/14/2004  | 12/3/2008  | Good                      |
| 710         | Duwamish    | 12309, 12556             | 251                 | 1/15/2004  | 12/9/2015  | Poor                      |
| 711         | Duwamish    | 12314                    | 58                  | 1/14/2004  | 12/3/2008  | Fair                      |

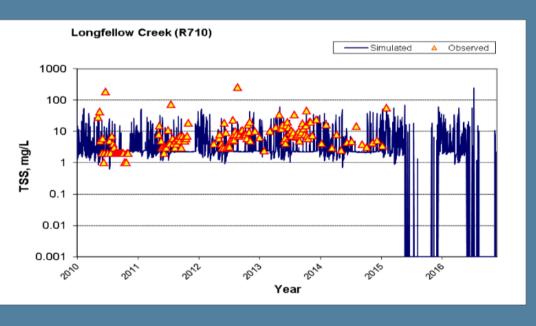

Very Good: 5


Good: 6

Fair: 2 Poor:2

### Reach 344

| Measure                     | Validation 1997-2006 | Calibration 2007-2017 |
|-----------------------------|----------------------|-----------------------|
| Count                       | 34                   | 59                    |
| Concentration Average Error | 162.07%              | 77.97%                |
| Concentration Median Error  | -28.52%              | -1.18%                |
| Load Average Error          | 690.48%              | 301.19%               |
| Load Median Error           | -4.25%               | -0.13%                |







- Minimized the KSAND and M for the R344 and the upstream reach.
- Will try reducing the sediment supply from both sediment bed and upland.
- TAUCD and TAUCS could be adjusted

### Reach 710

| Measure                     | Validation 1997-2006 | Calibration 2007-2017 |
|-----------------------------|----------------------|-----------------------|
| Count                       | 34                   | 217                   |
| Concentration Average Error | -3.81%               | -59.35%               |
| Concentration Median Error  | 10.84%               | -18.40%               |
| Load Average Error          | -28.16%              | -46.43%               |
| Load Median Error           | 0.45%                | -3.18%                |





- Maximized the KSAND, EXPSND and M to increase the TSS.
- Will try increasing the sediment supply from upland.
- Also need to increase the sediment supply from impervious land.