

Washington Department of Ecology

OECD Toxicity Testing of 6PPD Quinone using Oncorhynchus mykiss (Rainbow Trout)

Prepared for: Washington State Department of Ecology

Prepared by: Enthalpy Analytical

4340 Vandever Avenue San Diego, CA 92120 (858) 587-7333

Date Submitted: November 11, 2023

Data Quality Assurance:

- Enthalpy Analytical (formerly Nautilus Environmental) is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- All test results have met internal Quality Assurance Program requirements.

Results verified by:	Peter Arth, Director	
	Teles artis	

Di-

Test IDs: 2309-S049

INTRODUCTION

Washington Department of Ecology engaged Enthalpy Analytical (Enthalpy) to generate acute toxicity data on the sensitivity of rainbow trout to 6PPD-quinone. 6PPD-quinone, a chemical found to be present in roadway runoff, was identified as a chemical linked to acute mortality in coho salmon (Oncorhynchus kisutch) in stormwater-impacted watersheds throughout the Puget Sound basin. Notably, 6PPD-quinone is a transformation product of 6PPD, an additive in the process of tire manufacturing to protect the rubber polymers from degrading and cracking, and it has a published effect to juvenile coho salmon at concentrations below 0.1 µg/L (Tian 2022). The objective of this study is to compare the relative toxicity of rainbow trout to 6PPD-quinone.

Testing was conducted in accordance with the Organization of Economic Cooperation and Development (OECD) method 203, as it would pertain to the United Nations Economic Commission for Europe (UNECE) Globally Harmonized System of Classification and Labeling of Chemicals (GHS; UNECE 2013). Testing was augmented by guidance in OECD method 23 for preparation of difficult to test substances.

The purpose of the GHS is to provide standard criteria for the determination and classification of health, physical, and environmental hazards of chemicals. As part of the current iteration of the GHS hazard characterization system, acute aquatic toxicity tests are conducted to measure the potential of chemicals to cause injury to aquatic organisms subjected to short-term exposure.

Testing was performed to measure acute survival effects to the rainbow trout, *Oncorhynchus mykiss*. All testing was conducted at the Enthalpy Analytical laboratory in San Diego, California. The test was conducted between September 6 and 10, 2023.

Test IDs: 2309-S049

MATERIALS AND METHODS

The test material was purchased directly from the supplier and had a listed purity of greater than 95 percent. Upon receipt at the laboratory, the product was stored in cool, dry conditions until used for using.

Compound	CAS Number	Supplier	Product Description
6PPD-quinone	unknown	HPC Standards	Dark orange powder

Based on the relatively low solubility of the chemical compound in water, the compound was dissolved in acetone, a solvent vehicle, prior to being introduced to water and exposed to the organisms for testing. A stock solution containing the compound and solvent was produced and test dilutions were subsequently created by taking an aliquot of the stock and adding it to water to create the final desired exposure concentrations. A solvent control, consisting of the highest concentration of acetone used in the test series, was added to laboratory dilution water, and tested concurrently to ensure the addition of the solvent itself did not cause detrimental effects to the test organisms.

Nominal concentrations for the 6PPD-quinone exposure were 12, 5.5, 2.5, 1.1, 0.5, and 0.2 micrograms per liter (μ g/L). A 24 milligram per liter (μ g/L) acetone control was also tested with this compound.

Subsamples for verification of compound concentrations were collected and analyzed at the beginning and end of the testing period for the 0.2, 2.5 and 12 μ g/L concentrations. The stock solution used to create the individual test solutions was also analyzed. Analysis was provided by WECK Laboratory and a full report is provided in Appendix D. Nominal concentrations were used for all data analysis and reporting.

Toxicity tests were conducted using a listed fish species in accordance with OECD method 203. Concurrent laboratory reference toxicant tests used for quality assurance followed OECD guidelines. Effects were evaluated statistically using the Comprehensive Environmental Toxicity Information System™ (CETIS, version 2.1.4.11) from Tidepool Scientific Software. Organism performance in each test was compared to that observed in the concurrent control exposure. The No Observed Effect Levels (NOEL) and Lowest Observed Effect Levels (LOEL) were calculated using a parametric or nonparametric analysis, as appropriate. The

Test IDs: 2309-S049

concentrations expected to cause a lethal effect to 25 and 50 percent of test organisms (LC_{25} or LC_{50} , respectively) were calculated using linear interpolation and Spearman-Karber.

Larval Fish Toxicity Test Specifications

Test Period: 9/6/23, 15:15 to 9/10/23, 16:15

Test Organism: Oncorhynchus mykiss (rainbow trout)

Endpoint(s): 96-hour Acute Survival

Test Organism Source, Size: Thomas Fish Company (Anderson, CA), 3-6 cm

Test Chamber: 4-L glass jars

Volume per Replicate, 3 L, 2 Replicates per concentration

Number of Replicates:

Number of Organisms per

Replicate:

Photoperiod: 16 hours light:8 hours darkness, ambient laboratory levels (50 –

100 ft-c)

5

Feeding: None during the test

Control/Dilution Water: Moderately hard freshwater

Test Concentrations: 12, 5.5, 2.5, 1.1, 0.5, and 0.2 µg/L; lab and solvent controls

Protocol Used: OECD 203 Fish, Acute Toxicity Test (OECD 2019)

Acceptability Criteria: Mean lab control survival ≥ 90%

Reference Toxicant Test: A concurrent reference toxicant test using copper chloride

RESULTS

Statistically significant effects were detected in the 12, 5.5, and 2.5 μ g/L concentrations tested, resulting in a NOEC of 1.1 μ g/L. The LC₅₀ was calculated as 1.8 μ g/L, and the LC₂₅ was calculated as 1.45 μ g/L. No sublethal abnormalities were observed in the fish which survived.

Nominal values were used for the calculation of all statistical endpoints. Subsamples were collected from select test concentrations (0.2, 2.5, 12 g/L) at test initiation and termination (or when complete mortality in the test concentration was observed), which represent the lowest, a middle, and highest test concentrations. A subsample of the stock solution used to create the individual test solutions was also collected and measured.

Test IDs: 2309-S049

The target concentration of the stock solution was $1000 \,\mu\text{g/L}$ and the measured value was $980 \,\mu\text{g/L}$. This confirms that the measurement of the neat compound was precise and there was minimal product loss when it was dissolved in acetone and then water to create the stock solution.

Measurements taken from the individual test solutions at the time of test initiation indicate that nominal targets were achieved within a +/- 25 percent range. However, it should be noted that compound concentrations decreased from the beginning to the end of the test exposure. Compound concentration decreases tended to be higher (as a relative percentage of the initial measured concentration) in test solutions which had higher survival of the test organisms. Loss in the 0.2 μ g/L test concentration, which had no mortality, was greater than 80 percent over the course of the test (Table 1). The decrease in the highest test concentration, 12 μ g/L was less than 10 percent where complete mortality occurred within 24 hours of test initiation. And finally, a middle concentration, 2.5 μ g/L showed a decrease in concentration of approximately 50 percent by the end of the test; this concentration had a steady increase in mortality observed throughout the 96-hour duration of the bioassay.

Significant care was taken during testing, including using glass material where ever possible, to minimize the loss of 6PPD quinone to adsorption of test equipment. The mechanism for toxicity with regard to aquatic life is still under investigation, however it is reasonable to believe that the reductions in measured concentrations can be attributable to a combination of degradation and absorption by the test organisms (Foldvik 2022). The pattern of reduction observed in this study, with the highest reduction in final 6PPD quinone being observed in the test concentration with the highest survival supports the theory that the organisms are absorbing the quinone throughout the test exposure. This pattern is further supported in the remaining two concentrations which were measured where 6PPD quinone concentration reductions at the end of the bioassay varied in parallel with the rate of mortality observed in the test organisms.

Summaries of statistical results are provided in Table 1. Raw datasheets and complete statistical summaries are provided in Appendix A.

Test IDs: 2309-S049 Septemb

Table 1. Summary of Toxicity Test Results - 6PPD-quinone

Test Concentration (µg/L)	Measured Concentration at Initiation (μg/L)	Measured Concentration at Termination (μg/L) ^a	Mean 96-hr Survival (%)	
Lab Control			100	
Solvent Control			100	
0.2	0.25	0.042	100	
0.5	NM	NM	100	
1.1	NM	NM	100	
2.5	1.9	0.91	0.00	
5.5	NM	NM	0.00	
12	9.9	9.3	0.00	
	NOEL (µg/L)		1.1	
	LOEL (µg/L) 2.5			
	LC ₅₀ (µg/L)		1.8	
	LC ₂₅ (μg/L)		1.5	

 $^{^{\}text{a}}$ 12 $\mu\text{g/L}$ concentration measured at day 1, when full mortality occurred.

NM = Not Measured

NOEL = No Observed Effect Level

LOEL = Lowest Observed Effect Level

LC₅₀ = the concentration at which 50 percent of the organisms show a lethal effect

LC₂₅ = the concentration at which 25 percent of the organisms show a lethal effect

QUALITY ASSURANCE

The product material was received in good condition. Mean control responses met minimum test acceptability criteria, and all procedures followed protocol conditions and requirements, unless otherwise noted. The fish were acclimated to the required test temperature and laboratory control water source upon receipt and were held for a period of at least 9 days before test initiation. Fish were fed to satiation in holding (as often as daily); and feeding was discontinued 24 hours before the exposure began.

Minor QA/QC issues that were not likely to have any bearing on the test results are noted on

Test IDs: 2309-S049

the data sheets, and a list of data qualifier codes is available in Appendix B.

Reference Toxicant Tests

Concurrent reference toxicant test results are summarized in Table 2 and presented in full in Appendix C. The reference toxicant test met minimum test acceptability criteria, and the EC_{50} was within two standard deviations of the historical mean, indicating the organisms exhibited typical sensitivity to copper as is usually observed in the laboratory.

Table 2. Reference Toxicant Test Results

Species & Endpoint	NOEL (μg/L copper)	LC ₅₀ (μg/L copper)	Historical LC ₅₀ ± 2 SD (μg/L copper)	CV (%)
Fathead Minnow: 96-hour Survival	200	66.0	84.1 ± 71.8	42.7

NOEL = No Observed Effect Level

 LC_{50} = the concentration at which 50 percent of the organisms show a lethal effect

Historical LC $_{50} \pm 2$ SD = the mean LC $_{50}$ from the previous tests performed by Enthalpy, plus or minus two standard deviations CV= Coefficient of Variation

REFERENCES

Test IDs: 2309-S049

- Quality Assurance Project Plan- Tire Chemicals OECD Toxicity Testing of 6PPD and Related Alternatives using the Rainbow Trout, (*Onchorynchus mykiss*)- October 2022
- Brinkmann, M., Et. Al. 2022. Acute Toxicity of the Tire Rubber-Derived Chemical 6PPD-quinone to Four Fishes of Commercial, Cultural, and Ecological Importance. Environmental Science & Technology Letters 2022 9 (4), 333-338.
- Kyoshiro Hiki, et al. Environmental Science & Technology Letters 2021 8 (9), 779-784 DOI: 10.1021/acs.estlett.1c00453
- Foldvik, A, Et. Al. 2022. Acute Toxicity Testing of the Tire Rubber-Derived Chemical 6PPD-quinone on Atlantic Salmon (*Salmo salar*) and Brown Trout (*Salmo trutta*). Environmental Toxicology Chemistry 2022 Dec; 41(12): 3041-3045
- OECD. 2019a. Test No. 23: GUIDANCE DOCUMENT ON AQUEOUS-PHASE AQUATIC TOXICITY TESTING OF DIFFICULT TEST CHEMICALS, Second Edition.
- OECD. 2019b. Test No. 203: Fish, Acute Toxicity Test. OECD Guidelines for the Testing of Chemicals, Section 2.
- Tian Z, Et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science. 2021 Jan 8;371(6525):185-189. doi: 10.1126/science.abd6951. Epub 2020 Dec 3. Erratum in: Science. 2022 Feb 18;375(6582):eabo5785. PMID: 33273063.
- Tian, Z.; Gonzalez, M.; Rideout, C. A.; Zhao, H. N.; Hu, X.; Wetzel, J.; Mudrock, E.; James, C. A.; McIntyre, J. K.; Kolodziej, E. P. 6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard. *Environmental Science & Technology Letters* **2022**, *9* (2), 140–146,
- Tidepool Scientific Software. 2000-2022. CETIS Comprehensive Environmental Toxicity Information System Software, Version 2.1.4.11.
- UNECE. 2013. Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Fifth Revised Edition.
- US EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition (EPA/821/R-02/012). US EPA Office of Water, Washington, DC.

Appendix A

Datasheets and Statistical Summaries

Report Date: Test Code/ID:

30 Oct-23 12:40 (p 1 of 1) 2309-S049 / 06-1504-4963

Nautilus Environmental (CA)

Acute Fish S	urvival Test	· 1								Nautilus	Environm	ental (CA)
Batch ID: Start Date: Ending Date: Test Length:	12-3487-5269 06 Sep-23 15:1 10 Sep-23 15:1 96h	15 F	Test Type: Protocol: Species: Taxon:	Survival (96h) OECD 203 Oncorhynchus	mykiss			Dilu Brit	ilyst: ient: ne: irce:	Laboratory Fres Not Applicable Thomas Fish Co		Age: 510	ש'
	00-5700-2169 : 06 -6ep-23 ა ა ⁶ : 06-Sep-23 კ ეს 15h	123 C	Code: Material: CAS (PC): Client:	365C8B9 Chemical Prod Washington De		Ecology		Sou	ject: ırce: tion:	6PPD-quinone Washington Dep 6PPD-quinone	partment of	Ecology	
Analysis ID	parison Summ Endpoint 96h Survival Ra		parison Method Exact Test			√	NOEL 1.1	LOEI 2.5	L TOEL 1.658	PMSD		s	
Point Estima Analysis ID 00-0827-6895	te Summary Endpoint 96h Survival Ra	ate		Estimate Methor Interpolation (IC			√	Level EC25 EC50	μ g/L 1.45 1.8	95% LCL 1.45 1.8	95% UCL 1.45 1.8		S
	Rate Summary	0		050/ 1.01	050/ 1101				0.15	- 2415	0.404	0/===	7
Conc-µg/L 0 0.2 0.5 1.1 2.5 5.5 12	S LC	2 2 2 2 2 2 2 2 2 2 2	1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000	1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000	95% UCL 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000	Min 1.000 1.000 1.000 1.000 1.000 0.000 0.000		1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000	0.00% 0.00% 0.00% 0.00% 0.00% 	%Effect 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00%	, 0
96h Survival	Rate Detail			<u></u>				MC	5: 45F	C67E29C39E3A	2AE2CCB	E7987F50	9
Conc-μg/L 0 0 0.2 0.5 1.1 2.5 5.5	S LC	Rep 1 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000	Rep 2 1.000 1.000 1.000 1.000 1.000 0.000										

5=solvent control

Report Date:

30 Oct-23 12:40 (p 1 of 1)

2309-S049 / 06-1504-4963

Test Code/ID:

Nautilus Environmental (CA)

Analysis ID: 18-5393-3670 Analyzed:

Fisher Exact Test

Acute Fish Survival Test

30 Oct-23 12:40

Endpoint: 96h Survival Rate

Analysis:

CETIS Version: CETISv2.1.4

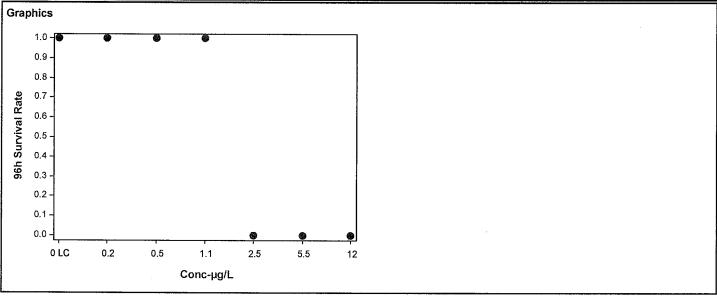
Single 2x2 Contingency Table

Status Level:

007-926-968-0

1

Edit Date: 30 Oct-23 12:39


MD5 Hash: 0DB7DFC4292BA4CD67ECDF2464EBDA8 Editor ID:

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	Tox Units
Untransformed	C > T	1.1	2.5	1.658	

Control	vs	Conc-µg/L	Test Stat	P-Type	P-Value	Decision(α:5%)
Lab Control		0.2	1.000	Exact	1.0000	Non-Significant Effect
		0.5	1.000	Exact	1.0000	Non-Significant Effect
		1.1	1.000	Exact	1.0000	Non-Significant Effect

96h Survival Rate Frequencies								
Conc-µg/L	Code	NR	R	NR + R	Prop NR	Prop R	%Effect	
0	LC	10	0	10	1.000	0.000	0.00%	
0.2		10	0	10	1.000	0.000	0.00%	
0.5		10	0	10	1.000	0.000	0.00%	
1.1		10	0	10	1.000	0.000	0.00%	
2.5		0	10	10	0.000	1.000	100.00%	
5.5		0	10	10	0.000	1.000	100.00%	
12		0	10	10	0.000	1.000	100.00%	

96h Survival R	ate Summary	•									
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	2	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
0.2		2	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
0.5		2	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
1.1		2	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
2.5		2	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.00%
5.5		2	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.00%
12		2	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.00%

Acute Fish Survival Test

Report Date: Test Code/ID:

30 Oct-23 12:40 (p 1 of 1)

2309-S049 / 06-1504-4963

Mautilus Environmental	CAN

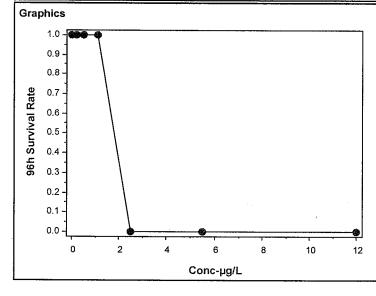
Analysis ID: 00-0827-6895 Endpoint: 96h Survival Rate CETIS Version: CETISv2.1.4

Analyzed: 30 Oct-23 12:40 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Edit Date: 30 Oct-23 12:39 MD5 Hash: 0DB7DFC4292BA4CD67ECDF2464EBDA8 Editor ID: 007-926-968-0

Linear Interpolation Options

X Transform Y Transform Seed Resamples Exp 95% CL Method
Linear Linear 24428 1000 Yes Two-Point Interpolation


Point Estimates

 Level
 μg/L
 95% LCL
 95% UCL

 EC25
 1.45
 1.45

 EC50
 1.8
 1.8

96h Survival R	ate Summary				Calculate	ed Variate(A	\/B)			Isoto	nic Variate
Conc-µg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	2	1.000	1.000	1.000	1.000	0.00%	0.00%	10/10	1.000	0.00%
0.2		2	1.000	1.000	1.000	1.000	0.00%	0.00%	. 10/10	1.000	0.00%
0.5		2	1.000	1.000	1.000	1.000	0.00%	0.00%	10/10	1.000	0.00%
1.1		2	1.000	1.000	1.000	1.000	0.00%	0.00%	10/10	1.000	0.00%
2.5		2	0.000	0.000	0.000	0.000		100.00%	0/10	0.000	100.00%
5.5		2	0.000	0.000	0.000	0.000		100.00%	0/10	0.000	100.00%
12		2	0.000	0.000	0.000	0.000		100.00%	0/10	0.000	100.00%

DF-018

Client: WADOE	
Sample ID: 6PPD-quinone	
Test No.: 2309 - 5049	

Test Species: O. mykiss

Start Date/Time: 1/0/23 1515

End Date/Time: 9/10/23 1515

Concentration (ug/L)	Rep			Live	umbe Orga	r of nisms				nduct mhos/	-			Ter (R)	npera (°C)	iture	G2	314	Disso Q14	lved ((mg/L	xyge	n			pH (units))		Percent
·········		0	1	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	Survival
Lab Control	A	5	5	5	5	5	5	330	33 6	353	331	324	12.2	10-6	11.1	11.6	10.9	11.7	10.4	9.7	8.8	8.9	755	7.40	7.28	7.33	7.30	
	В	5	5	3	5	5	5	335	338	355	333	330	12.5	105	11.0	11.5	10-9		10 4		85				730	-		100
0.2	Α	5	5	5	5	5	5	336	337	356	333		_	7		119	11.4	11.3	9.7	8.9	8.6				7.26.			
	В	5	5	5	5	5	5			3SS			$\overline{}$				11.3		9.6						7.3)			100
0.5	Α	5	5	5	5	5	5	33V	338	356	3541	334	12.60	11.2	11.6	12.0	11.5	11.2	9.5	90	90	 			7.26		<u> </u>	
	В	5	5	5	5	5	5			355							11.4			-2		 			7.75			100
1.1	Α	5	5	5	5	5	.A	33ip	338	336 ·	335	335					11.4			8-6	8.8		_ ~		7.29			
	В	5	5	5	5	5	5	337	338	356	334	334			- 4		11.5		9.4		8.8	1			7.34			[00]
2.5	Α	5	50	\$53	2_	ì	0		341	363	343	352	12.4	11.1			11.4		9.5						7.36	-		
	В	5	5	23	3	3	Q	337									11.5								7.41			0
5.5	Α	5	50	\$ \$ D	4900-	-		1	340	salara	_			11.0	_	~	,		105		-		_	7.48	-			
	В	5	50	\$40			-	336	340	_	-	,	12.4	11.1	_			11.3	11.0	-	-	_		7.49	-	_	- Annegan	0
12	A.	5	5	0	_	1	,	33 1	346				125	11.0	-			11-3	10.9	~		_		7.47		_	-	
	В	5	5	0	•	_	^		340		1	1	12.4	11.0		-	-	11.3	0.11	_	_			7.57		J	-	0
	Counts	VO	00	1.1	7.20	(~M	KK						•				<u> </u>				·						L	

Fish Size at test initiation*:

Tech Initials

Counts KR BO GM GM GM KR

WQ KR X GM GM GM KR

QC BO

Environmental Chamber:

Weights (g): 0.44 0.41 0.58 $\mu = 0.45$ 0.45 0.58 $\mu = 0.45$ 0.45 0.75 π

Sample Description: Dark Orange Powder

Animal Source/Date Received: Thomas Fish(o.

Age at Initiation: 51 days post hatch

Comments:

*5 random fish are sacrificed at initiation for size determination.

BQ18 KR 9/6/23 BQ18GM 9/7/23

QC Check:

ACS 10/30/23

Final Review: _ \ | | / | / 2/3

Freshwater Acute Bioassay

OECD 203

Water Quality Measurements & Test Organism Survival

Static Conditions	Static	Conditions	
-------------------	--------	------------	--

DF-018

Client: WADOE	Test Species: O. mykiss
Sample ID: 6PPD-quinone	Start Date/Time: 9/4/23 1515
Test No.: 2309 - 8049	End Date/Time: 9/10/23 \6\5

Concentration (ug/L)	Rep			Live	umbei Orgai	r of nisms			(u	nduct mhos/	cm)			Q /	npera (°C)			€44 <u>-</u>	Disso		xyger (Q) ^L				pH (units)			Percent Survival
(ug/L)		0	1	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	
Acetone	Α	5	5	5	5	5	5	334	331	355	334	331	124	11.0	115	11.9	11.3	11.3	9.9	9.8	9.1	9.0	7:57	7.36	7.35	7.77	7.34	1/0/2
Control	В	5	5	5	5	5	5	334	337	354	353	331	12.5	10.9	11.4	11.5	11.2	11.3	9.6	9.4	8.6	8.7	7.56	7.35	7.33	7.33	7.30	100
																٠												
						ļ																						
	·																						_					
									ļ	1	ļ																	
	•			<u> </u>																								
																	4											
				 																								
	Counte	: #0	0-	1 20	6		WA,	 	.1	1	L	J		L	L	l	L		l	1		L	Ц	ļ	3			

Tech Initials WQ QC

Fish Size at test initiation*:

Env	rironmental Chamber:		Weights (g): (3.8 39 3.0		μ= <u>0.45</u> μ= <u>3.9</u>	Loading rate	0.75 g/
Sample Description	: Dark orange	Pouder	Animal Source/D	ate Received: Th	omas Fish Co 8/22/23	Age at Initiation		post-hatch
Comments:	*5 random fish are sac (P) 046 142 9 lefve	rificed at initiation for size	determination.					
QC Check: AC	8 10/30/22					Final Review	: 1/12/	23

Appendix B

Data Qualifier Codes

Glossary of Qualifier Codes

- Q1 Temperature out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperature out of recommended range; no action taken, test terminated same day
- Q3 Sample pH adjusted to within range of 6-9 with reagent grade NaOH or HCl, as needed
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with continuous aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, partial renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set. Test results were reviewed and reported in accordance with guidance found in EPA-833-R-00-003, 2000 unless otherwise specified.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set. Test results were reviewed and reported in accordance with EPA-833-R-00-003, 2000 guidance unless otherwise specified.
- Q18 Incorrect or illegible Entry
- Q19 Miscalculation
- Q20 PMSD criteria do not apply to the test of significant toxicity (TST) analysis
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% batch <u>mortality</u> observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Enthalpy and ultimately deemed fit to use for testing.
- Q23 Test organisms experienced a <u>temperature</u> shift greater than 3°C within 1 day or were received at a temperature greater than 3°C outside the recommended test temperature range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.
- Q24 Test organisms experienced a <u>salinity</u> shift greater than 3 ppt within 1 day or were received at a salinity greater than 3 ppt outside the recommended test salinity range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.

Version: 6/1/2021

Appendix C

Reference Toxicant Test Data

CETIS Summary Report

Acute Fish Survival Test

Report Date: Test Code/ID:

13 Sep-23 11:26 (p 1 of 1) 230906omra / 19-8080-9942

Nautilus Environmental (CA)

P													
Batch ID:	07-4282-2881	Т	est Type: S	Survival (96h)				Ana	alyst:				-
Start Date:	06 Sep-23 15:3	0 P	rotocol: \	Washington D0	DE (2009)			Dilu	uent:	Laboratory Fres	hwater		
Ending Date:	10 Sep-23 15:3	0 S	pecies: (Oncorhynchus	mykiss			Bri	ne:	Not Applicable			
Test Length:	96h	Т	axon:					Sou	ırce:	Thomas Fish Co).	Age:	37d
Sample ID:	09-6435-6717	C	ode:	397AEA6D Z3	09060n	va.		Pro	ject:	Internal			
Sample Date:	06 Sep-23	N		Copper chloride		., .		Sou	ırce:	Copper Chloride			
Receipt Date:	06 Sep-23	C	AS (PC):					Sta	tion:				
Sample Age:	16h	C	lient:										
Multiple Com	parison Summa	ary											
Analysis ID	Endpoint		Compa	rison Method			✓	NOEL	LOEL	. TOEL	PMSD		s
10-2125-9240	96h Survival Ra	ite	Dunnett	t Multiple Com	parison Test	i		200	400	282.8	48.4%		1
Point Estimat	e Summary												
Analysis ID	Endpoint		Point E	stimate Metho	od		✓	Level	μg/L	95% LCL	95% UCL		s
18-9941-8060	96h Survival Ra	ite	Trimme	ed Spearman-K	ärber			EC50	66	39.3	111		1
96h Survival I	Rate Summary												
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std E	rr Std Dev	CV%	%Effe	∍ct
0	LC	2	1.000	1.000	1.000	1.000		1.000	0.000	0.000	0.00%	0.00%	6
25		2	0.750	-1.160	2.660	0.600		0.900	0.150	0.212	28.28%	25.00	%
50		2	0.400	0.400	0.400	0.400		0.400	0.000	0.000	0.00%	60.00	%
100		2	0.300	-0.971	1.570	0.200		0.400	0.100	0.141	47.14%	70.00	%
200		2	0.550	-2.630	3.730	0.300		0.800	0.250	0.354	64.28%	45.00	%
400		2	0.000	0.000	0.000	0.000		0.000	0.000	0.000		100.0	0%
96h Survival F	Rate Detail							MC)5: C61E	BBA9DCCE02D9	961CDDA1	036FA	-D2
Conc-µg/L	Code	Rep 1	Rep 2										

@AS BO10/6/23

LC

1.000

0.900

0.400

0.400

0.300

0.000

1.000

0.600

0.400

0.200

0.800

0.000

0

25

50

100

200

400

Report Date: Test Code/ID:

13 Sep-23 11:26 (p 1 of 2) 230906omra / 19-8080-9942

Acute Fish Su	rviva	al Test					***************************************			Nautilu	s Environi	mental (CA
Analyzed:	13 S	125-9240 Sep-23 11:2 Sep-23 11:2	6 Ana	lysis: Par	n Survival Ra rametric-Con 4E3B7EFB5	ntrol vs Trea		Sta	ΓIS Version: tus Level: tor ID:	CETISv2 1 009-628-		
Data Transfori	m		Alt Hyp	Alla Caracteria de la consequencia della consequenc			NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Correc	cted)		C > T				200	400	282.8		0.484	48.36%
Dunnett Multip	ole C	omparisor	n Test									
Control	vs	Conc-µg/	L df	Test Stat	Critical	MSD	P-Type	P-Value	Decision	(a:5%)		
Lab Control	***************************************	25	2	1.61	2.85	0.61	CDF	0.2100		ificant Effect		
		50*	2	3.4	2.85	0.61	CDF	0.0276	Significar			
		100*	2	3.91	2.85	0.61	CDF	0.0163	Significar			
		200	2	2.65	2.85	0.61	CDF	0.0623	-	ificant Effect		
ANOVA Table												
Source		Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between		0.889206		0.222302		4	4.84	0.0569		ificant Effect		***************************************
Error		0.229442		0.0458885	5	5			J.			
Total		1.11865				9						
ANOVA Assum	ptio	ns Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision	(a:1%)		
Variance		Bartlett Ed	quality of Va	riance Test	***************************************	***************************************	***************************************		Indetermi	nate		······································
Distribution			/ilk W Norm			0.96	0.741	0.7909	Normal D			
96h Survival R	ate	Summary										
Conc-µg/L		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		LC	2	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
25			2	0.750	0.000	1.000	0.750	0.600	0.900	0.150	28.28%	25.00%
50			2	0.400	0.399	0.401	0.400	0.400	0.400	0.000	0.00%	60.00%
100			2	0.300	0.000	1.000	0.300	0.200	0.400	0.100	47.14%	70.00%
200			2	0.550	0.000	1.000	0.550	0.300	0.800	0.250	64.28%	45.00%
400			2	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.00%
Angular (Corre	cted	l) Transfor	med Summ	ary								
Conc-µg/L		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		LC	2	1.410	1.410	1.420	1.410	1.410	1,410	0.000	0.00%	0.00%
25			2	1.070	-1.240	3.370	1.070	0.886	1.250	0.181	24.04%	24.39%
50			2	0.685	0.684	0.685	0.685	0.685	0.685	0.000	0.00%	51.51%
100			2	0.574	-0.830	1.980	0.574	0.464	0.685	0.111	27.22%	59.34%
200			2	0.843	-2.510	4.190	0.843	0.580	1.110	0.264	44.23%	40.27%
400			2	0.150	0.150	0.150	0.0160	0.000	0.150	0.204	0.000/	40.2770

400

2

0.159

0.159

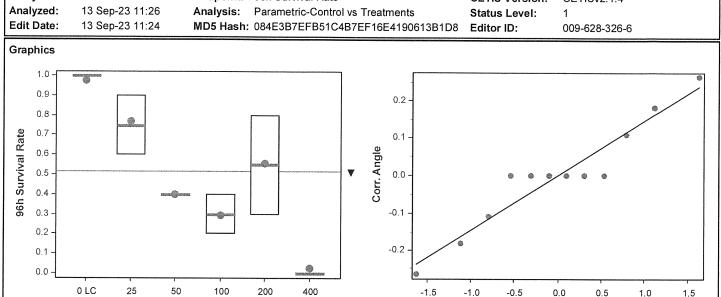
0.159

0.159

0.159

0.159

0.000


0.00%

88.76%

Report Date: Test Code/ID:

13 Sep-23 11:26 (p 2 of 2) 230906omra / 19-8080-9942

Acute Fish Survival Test Nautilus Environmental (CA) Analysis ID: 10-2125-9240 Endpoint: 96h Survival Rate CETIS Version: CETISv2.1.4

-1.5

-1.0

-0.5

0.0

Rankits

0.5

1.0

1.5

400

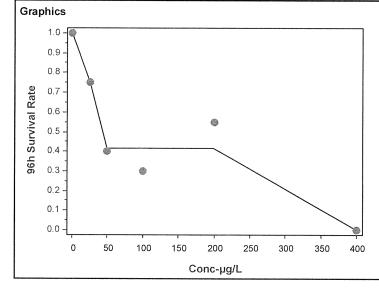
Conc-µg/L

Report Date: Test Code/ID:

13 Sep-23 11:26 (p 1 of 1) 230906omra / 19-8080-9942

CETISv2.1.4

Acute Fish Survival Test Nautilus Environmental (CA)

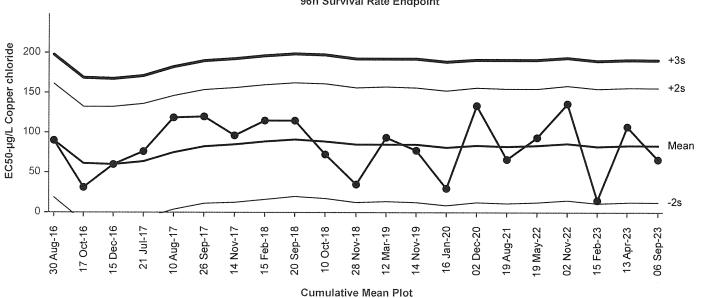

Analysis ID: 18-9941-8060 Endpoint: 96h Survival Rate CETIS Version:

Analyzed: 13 Sep-23 11:26 Analysis: Trimmed Spearman-Kärber Status Level:

Edit Date: 13 Sep-23 11:24 **MD5 Hash**: 084E3B7EFB51C4B7EF16E4190613B1D8 Editor ID: 009-628-326-6

Trimmed Spearman-Kärber Estimates **Threshold Option** Threshold Trim Mu Sigma EC50 95% LCL 95% UCL Control Threshold 0 25.00% 1.82 0.112 66 39.3 111

96h Survival R	ate Summary				Calculate	ed Variate(A	A/B)			Isoto	nic Variate
Conc-µg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	2	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%
25		2	0.750	0.750	0.600	0.900	28.28%	25.00%	15/20	0.750	25.00%
50		2	0.400	0.400	0.400	0.400	0.00%	60.00%	8/20	0.417	58.30%
100		2	0.300	0.300	0.200	0.400	47.14%	70.00%	6/20	0.417	58.30%
200		2	0.550	0.550	0.300	0.800	64.28%	45.00%	11/20	0.417	58.30%
400		2	0.000	0.000	0.000	0.000		100.00%	0/20	0.000	100.00%



CETIS QC PlotReport Date: 13 Sep-23 11:27 (1 of 1)

Acute Fish Survival Test Nautilus Environmental (CA)

Test Type:Survival (96h)Organism:Oncorhynchus mykissMaterial:Copper chlorideProtocol:Washington DOE (2009)Endpoint:96h Survival RateSource:Copper Chloride-CU

Acute Fish Survival Test 96h Survival Rate Endpoint

 Mean:
 84.1
 Count:
 20
 -2s Warning Limit:
 12.3
 -3s Action Limit:
 -23.5

 Sigma:
 35.88
 CV:
 42.70%
 +2s Warning Limit:
 156
 +3s Action Limit:
 192

Quality	Control	Data
Quality	COHUGI	Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2016	Aug	30	13:05	90.13	6.025	0.1679			06-6522-4245	11-7821-6703
2		Oct	17	15:45	31.5	-52.6	-1.466			11-9706-2514	03-3027-4661
3		Dec	15	13:00	59.46	-24.64	-0.6867			07-2059-1930	21-0698-8947
4	2017	Jul	21	11:45	75.79	-8.314	-0.2317			12-6230-4373	10-5665-4943
5		Aug	10	13:35	119.1	34.96	0.9745			09-7390-4688	11-1885-9400
6		Sep	26	15:10	120.1	35.97	1.003			12-0767-7259	14-1478-0761
7		Nov	14	11:25	96.22	12.12	0.3379			21-0521-5529	14-2305-2435
8	2018	Feb	15	15:00	114.5	30.44	0.8483			08-5122-1964	18-9847-1069
9		Sep	20	14:05	114.9	30.77	0.8576			14-1527-8451	21-3828-6142
10		Oct	10	16:40	72.55	-11.55	-0.3219			06-8408-1163	05-7761-5868
11		Nov	28	12:00	35.36	-48.74	-1.359			21-0374-7072	19-9377-5872
12	2019	Mar	12	12:10	93.3	9.203	0.2565			11-1972-1376	05-1051-7815
13		Nov	14	11:55	77.34	-6.764	-0.1885			08-3948-6775	01-9304-4998
14	2020	Jan	16	12:50	30.63	-53.47	-1.49			15-5355-8442	09-8383-1081
15		Dec	2	13:30	133.3	49.23	1.372			07-0223-4669	10-8492-8883
16	2021	Aug	19	14:25	65.98	-18.12	-0.5051			11-4973-5943	08-1400-5422
17	2022	May	19	12:45	93.3	9.203	0.2565			03-2996-8953	07-9626-2312
18		Nov	2	10:05	136.6	52.5	1.463			14-6511-1746	10-0042-0505
19	2023	Feb	15	11:30	14.71	-69.39	-1.934			17-0773-8757	02-8314-6307
20		Apr	13	15:15	107.2	23.08	0.6432			04-5815-1771	04-7188-7445
21		Sep	6	15:30	65.98	-18.12	-0.5051			19-8080-9942	18-9941-8060

Freshwater Acute Bioassay Static Conditions

Dangerous Waste Characterization

Water Quality Measurements & Test Organism Survival

Final Review: 80 10/6/23

Static	Cona	11
DF-019		

Client: Internal Sample ID: CuCl₂ Test No.: 3309060MV9

Test Species: O. mykiss Start Date/Time: 9/6/23 1530 1530 End Date/Time: 9/10/23

Concentration	54115 //			umber					nduct	•				mpera	ture	0.3	DIL	Disso	lved C	xyger			VII. ATTIVITY	рН			Percent
(μg/L)	RAND#	0	Live 24	Organ		96		· · · · · · · · · · · · · · · · · · ·	nhos/		Lanca	ai os a uce	Q1	(°C)	1	G-2		Q14			614	Vert Zerran		units		www.elseline	Survival
Lab Control	10	10	10	\O	10		32EN	24 329	48 33%	72 323	96	120	24	48	72	96	11.3	11.6	48	72		0 7.35	24 7.7⊀	48 743	72 739	96	ioo
Lab Control	8	10	10	10	10	10	-			+	30 00	1	<u> </u>		11.7		1	10.6		493							100
25	9	10	10	el	CA	9	A THE REAL PROPERTY AND ADDRESS OF THE PARTY A		According to the control	1	331		-	144	11.7	ALCOHOLD THE REAL PROPERTY.	ļ	10-1				7.35				-	90
∠5	5	10	10	30	7	to	I													8.3				- 40	7.24	-	
				8	8	4	335				 	*	-		-		-	9.9	-	8.2		7.36		- 40	,	-	60 40
50	7	10	10	10	<u> </u>	1										10.7	<u> </u>	9.9		7.6		7-36 7-35			,		
	4	10	10	a	5	4		-	CANDON MANAGEMENT	-			-	-		10.5		 ' '	8.5 8.8	8.3					7.23	7.19	40
100	12	10	_	a	,	2			70.				10.3	 	+	 											
	3	10	10	10	3			-			-	11.7	-	-		10.9	}		8.3	8.7	***************************************	7.3(.		***************************************		-	20
200	1	10	10	10	0	3	11			333	- 0	7	1			10.9	109		8.7	8.3		-			7.73		30
	11	10	10	10			-	THE PERSON NAMED OF PERSONS NAMED OF PERSON NAMED OF PERS	TANKS CO. P. S.	-	535				-	11,000		99	<u> </u>	1000		7.34			4 400		80
400	2	10	0	1	0		336 335				1000	 	10.4	 	 	3659	10:1			10.0	graps	7.29					0
	6	10	10	اس	0	Maria Maria Maria	222	506	5>7	576		11.5	10.2	11.0	111.2	3650	10.1	7.1	9.5	814		7.3\ Rec	`		Pass	/Fail:	0
Tech Initials:	Counts	KP				KR													Sec. 1	417		11001	Jiucu	III LOÇ	j i ass	m an.	
	Readings		5	(J-' '	(m)	KP											1-										
L	Section and the section of the secti	80									Envir	onme	ntal C	hamb	er:		D										
Dilution Calcs (fin	nal volume 8					y: KYZ	/G1M																				
Conc. μg/L		25	50	100	200	400				V	Veigh	ts (g):	0.43	0.44	0.47	0-36	0.45	0.50	0.41	0.52	0.58	0.59	3			μ = _	0.48
Vol. Cu stock add	` ′		4.2	9:3	14.71	33.3				*	(Inst:	en sam															4.0
Cu Stock Conc. (բ	ıg/L)	40'000	AND DESCRIPTION OF THE PERSONS AND			· Commonweal									4.0	3.8	4.0	4.1	3.9	3.9	4.3	4.2				•	3 98 (1)
			ci 10	Thon	nast	Fish	(o.			Loa	ading:	0.	691	<u>L</u>	***************************************						_			_			3/3 7
Animal S	Source/Date	e Rece				<u>্</u>	122	23						_	İ	Hatch	Date:	71	17/2	13	Ra	atio of	ionge	st to s	snorte	st =	1-1101.26
				-			•	•							Sw	im-up	Date:	71	3/2	3							
														# Da	ys pos	st Swi	m-up:	37	day	5		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
Comments:		^ь 10 га	ndom	fish a	are sa	crifice	d at in	itiatio	n for	size d	eterm	inatio	n. The	e stan	dard l	ength	of the	longe	st fisl	n shou	ld be	no mo	re tha	n 2X t	he sh	ortest	fish.

(3) Q186m 9/8/23

QC Check:

Appendix D

Chemical Analysis

FINAL REPORT

Work Orders: 3112041 Report Date: 10/25/2023

Received Date: 9/12/2023

Turnaround Time: Normal

Phones: (858) 587-7333

Fax: (858) 587-3961

P.O. #:

Billing Code:

Project: 6PPD

Attn: Barbara Orelo

Client: Enthalpy Analytical - San Diego

4340 Vandever Avenue San Diego, CA 92120

ELAP-CA #1132 • EPA-UCMR #CA00211 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Barbara Orelo,

Enclosed are the results of analyses for samples received 9/12/23 with the Chain-of-Custody document. The samples were received in good condition, at 4.3 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Ryan J. Gasio Project Manager

FINAL REPORT

Enthalpy Analytical - San Diego 4340 Vandever Avenue San Diego, CA 92120 Project Number: 6PPD

Reported:

10/25/2023 17:25

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
6PPD quinone - 1,000 ug/L stock	ВО	3112041-01	Water	09/06/23 14:00	
6PPD quinone - 0.2 ug/L - Day 0	ВО	3112041-02	Water	09/06/23 14:00	
6PPD quinone - 2.5 ug/L - Day 0	ВО	3112041-03	Water	09/06/23 14:00	
6PPD quinone - 12 ug/L - Day 0	ВО	3112041-04	Water	09/06/23 14:00	
6PPD quinone - 0.2 ug/L - Day 4	ВО	3112041-05	Water	09/10/23 10:30	
6PPD quinone - 2.5 ug/L - Day 4	ВО	3112041-06	Water	09/10/23 10:35	
6PPD quinone - 12 ug/L - Day 1	ВО	3112041-07	Water	09/07/23 13:45	

Project Manager: Barbara Orelo

3I12041 Page 2 of 6

FINAL REPORT

Enthalpy Analytical - San Diego 4340 Vandever Avenue San Diego, CA 92120

Project Number: 6PPD

Reported:

10/25/2023 17:25

Sampled: 09/06/23 14:00 by BO

		L	(
		7	'

Sample Results

6PPD quinone - 1,000 ug/L stock Sample:

3I12041-01RE1 (Water)

MRI Dil Qualifier Result Units Analyzed Analyte

Project Manager: Barbara Orelo

Organic Compounds - Low Level by Tandem LC/MS/MS

Method: EPA 1694M Instr: LCMS03

Batch ID: W3I1112 Preparation: _NONE (LC) Prepared: 09/14/23 11:14 Analyst: jna 6PPD-quinone 20000 10000 09/15/23 980000 ng/l

Sample Results

6PPD quinone - 0.2 ug/L - Day 0 Sample: Sampled: 09/06/23 14:00 by BO

3I12041-02RE1 (Water)

Analyte Result MRI Units Dil Analyzed Qualifier

Organic Compounds - Low Level by Tandem LC/MS/MS

Method: EPA 1694M Instr: LCMS03

Batch ID: W3I1112 Preparation: _NONE (LC) Prepared: 09/14/23 11:14 Analyst: jna 6PPD-quinone 4.0 09/15/23 M-06 250 ng/l

Sample Results

Sample: 6PPD quinone - 2.5 ug/L - Day 0 Sampled: 09/06/23 14:00 by BO

3I12041-03RE1 (Water)

MRL Units Analyzed Qualifier Analyte Result

Organic Compounds - Low Level by Tandem LC/MS/MS

Method: EPA 1694M Instr: LCMS03

Batch ID: W3I1112 Prepared: 09/14/23 11:14 Preparation: _NONE (LC) Analyst: jna 6PPD-quinone 1900 20 ng/l 10 09/15/23 M-06

Sample Results

6PPD quinone - 12 ug/L - Day 0 Sampled: 09/06/23 14:00 by BO Sample:

3I12041-04RE1 (Water)

MRI Units Dil Analyzed Qualifier Analyte Result

Organic Compounds - Low Level by Tandem LC/MS/MS

Method: EPA 1694M Instr: LCMS03

Prepared: 09/14/23 11:14 Batch ID: W3I1112 Preparation: _NONE (LC) Analyst: jna 09/15/23 6PPD-quinone 9900 100 ng/l

Sample Results

6PPD quinone - 0.2 ug/L - Day 4 Sampled: 09/10/23 10:30 by BO Sample:

3I12041-05RE1 (Water)

Analyzed Qualifier Organic Compounds - Low Level by Tandem LC/MS/MS

MRI

Method: EPA 1694M Instr: LCMS03

Batch ID: W3I1112 Prepared: 09/14/23 11:14 Preparation: _NONE (LC) Analyst: jna 6PPD-quinone 20 09/15/23 42 ng/l

3I12041 Page 3 of 6

FINAL REPORT

Enthalpy Analytical - San Diego 4340 Vandever Avenue San Diego, CA 92120

Project Number: 6PPD

Result

Result

Project Manager: Barbara Orelo

Reported:

10/25/2023 17:25

Analyte

Analyte

Sample Results

(Continued)

Qualifier

Qualifier

6PPD quinone - 2.5 ug/L - Day 4 Sample:

Sampled: 09/10/23 10:35 by BO

Analyzed

Analyzed

3I12041-06RE1 (Water)

Organic Compounds - Low Level by Tandem LC/MS/MS Method: EPA 1694M Instr: LCMS03

Batch ID: W3I1112 Prepared: 09/14/23 11:14 Preparation: _NONE (LC) Analyst: jna 6PPD-quinone 10 09/15/23 910 ng/l

MRL

MRL

Units

Units

Dil

Dil

Sample Results

(Continued)

6PPD quinone - 12 ug/L - Day 1 Sample:

3I12041-07RE1 (Water)

Sampled: 09/07/23 13:45 by BO

Organic Compounds - Low Level by Tandem LC/MS/MS

Method: EPA 1694M Instr: LCMS03

Batch ID: W3I1112 Prepared: 09/14/23 11:14 Preparation: _NONE (LC) Analyst: jna 6PPD-quinone 100 09/15/23 M-06 ng/l 50 9300

FINAL REPORT

Enthalpy Analytical - San Diego 4340 Vandever Avenue San Diego, CA 92120 Project Number: 6PPD

Project Manager: Barbara Orelo

Reported:

10/25/2023 17:25

Quality

Quality Control Results

Organic Compounds - Low Level by Tandem	LC/MS/MS									
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3I1112 - EPA 1694M										
Blank (W3I1112-BLK1)			Pre	pared: 09/14/2	3 Analyzed	: 09/15/2	3			
6PPD-quinone	ND	2.0	ng/l							
IPPD-quinone	ND	2.0	ng/l							
LCS (W3I1112-BS1)	Prepared: 09/14/23 Analyzed: 09/15/23									
6PPD-quinone	23.7	2.0	ng/l	25.0		95	50-150			
IPPD-quinone	24.7	2.0	ng/l	25.0		99	50-150			
Matrix Spike (W3I1112-MS1)	Source: 3H30053-0	01	Pre	pared: 09/14/2	3 Analyzed	: 09/15/2	3			
6PPD-quinone	25.0	2.0	ng/l	25.0	ND	100	50-150			
IPPD-quinone	26.1	2.0	ng/l	25.0	ND	104	50-150			
Matrix Spike Dup (W3I1112-MSD1)	Source: 3H30053-0	01	Pre	pared: 09/14/2	3 Analyzed	: 09/15/2	3			
6PPD-quinone	27.1	2.0	ng/l	25.0	ND	108	50-150	8	200	
IPPD-quinone		2.0	ng/l	25.0	ND	107	50-150	3	200	

FINAL REPORT

Enthalpy Analytical - San Diego 4340 Vandever Avenue San Diego, CA 92120 Project Number: 6PPD

Due to the high concentration of analyte inherent in the sample sample was diluted prior to preparation and/or analysis. The MDL and MRL were

Project Manager: Barbara Orelo

Reported:

10/25/2023 17:25

Item M-06

Notes and Definitions

IVI-00	raised due to this dilution.
%REC	Percent Recovery
Dil	Dilution
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.