Nisqually Watershed Successful Implementation of RCW 90.94.020

Decision Points

June 6, 2019 Lisa Dally Wilson, PE WRIA 15 WRE Committee

CONTENTS

- The Nisqually Watershed Overview
- RCW 90.94.020 Planning Process in WRIA 11
- Sub-basin Delineations
- Consumptive Use Estimates
- Offsets Micro and Macro (NEB) Approach
- Offset Projects and Policies
- Next Steps

WRIA 11 OVERVIEW

History of Collaboration

- Nisqually River Council 1987
- 2003 Nisqually Watershed Plan
- Plan Addendum in Response to RCW90.94.020
- Nisqually Tribe Planning Unit Lead
- RCW90.94.020 3000 gpd maximum daily consumption per connection
- Adopted by Ecology February 1, 2019

PLANNING UNIT MEMBERS

IMPLEMENTING GOVERNMENTS

- Nisqually Indian Tribe LEAD
- Thurston, Pierce and Lewis Counties

OTHER PARTICIPANTS

- Cities of Lacey, Olympia, Yelm
- Town of Eatonville
- Thurston PUD
- WDFW, WA Dept of Ag, Ecology
- Nisqually River Council Citizens Advisory

WRIA 11 – Basic Steps to Implementing RCW 90.94.020

Interim Guidance for Determining Net Ecological Benefit

Dept of Ecology June 2018

- "Characterize and quantify potential impacts to instream resources from the proposed 20-year new domestic permitexempt water use at a scale that allows meaningful determinations of whether proposed offsets will be in-time and/or in the same sub-basin."
- "Suitably sized sub-basins"
- If available, estimates of:

 Timing of impacts
 Proportion of flow impacted
- "Anticipated benefits to instream resources from actions [projects and policies] designed to restore streamflow will offset and exceed projected impacts from new water use"

- 1. Define and Delineate Appropriately Sized Sub-basins
- 2. Estimate 20-Year Population Growth and New Dwelling Units
- 3. Calculate New Domestic Permit-Exempt Connections
- 4. Estimate Consumptive Use (3 methods)
- 5. Identify Projects and Actions to Offset 20 years of Consumptive Use
- 6. Quantify/Develop Projects and Actions as Offsets

- 1. Define and Delineate Appropriately Sized Sub-basins
- 2. Estimate 20-Year Population Growth and New Dwelling Units
- 3. Calculate New Domestic Permit-Exempt <u>Connections</u>
- 4. Estimate Consumptive Use (3 methods)

- 5. Identify Projects and Actions to Offset 20 years of Consumptive Use
- 6. Quantify/Develop Projects and Actions as Offsets

Impacts of permit-exempt use on streamflow – Little Spokane River Watershed

Modeled average reduction in flow (cfs) during July, August, September at Dartford Gage

Year	2040 Permit Exempt Demand	2040 Climate Change No Additional Demand
2005	-0.26	-14.5
2006	-1.42	-13.4
2007	-0.44	-14.4
2008	-1.72	-21.8
2009	-2.35	-24.6
2010	-1.08	-19.6
2011	-1.01	-30.7
2012	-0.56	-27.3
2013	-0.58	-29.4

- 1. Define and Delineate Appropriately Sized Sub-basins
- 2. Estimate 20-Year Population Growth and New Dwelling Units
- 3. Calculate New Domestic Permit-Exempt Connections
- 4. Estimate Consumptive Use (3 methods)
- 5. Identify Projects and Actions to Offset 20 years of Consumptive Use
- 6. Quantify/Develop Projects and Actions as Offsets

<u>Step 1</u> Define appropriate sub-basins

WatershedPlanning_Pro\WatershedPlanningSubbasins_11x17

✓ Approve Proposed Sub-basins

- Estimate 20-Year Population Growth and New Dwelling Units
- Calculate New Domestic Permit-Exempt <u>Connections</u>
- Estimate Consumptive Use (3 methods)
- Identify Projects and Actions to Offset 20 years of Consumptive Use
- Quantify/Develop Projects and Actions as Offsets

<u>Step 2</u> 22 Year Population Growth and New Dwelling Units (2018-2040)

- 3 Counties, 3 methods
- Thurston TRPC growth projections
- Pierce Historical percentages of permit-exempt well growth by subbasin
- Lewis growth projections
- 22 Year Projection (through 2040)
- Not a PU decision point in WRIA 11

✓ Approve Proposed Sub-basins

 Estimate 20-Year Population Growth and New Dwelling Units (Optional Decision Point)

A. Counties provide using their chosen growth forecasting methods (Nisqually: 2018-2040)

OR

B. Committee Oversight of methodology and assumptions inherent in the method

✓ Approve Proposed Sub-basins

Estimate 20-Year Population Growth and New Dwelling
 Units (Optional Decision Point)

- Calculate New Domestic Permit-Exempt <u>Connections</u>
- Estimate Consumptive Use (3 methods)
- Identify Projects and Actions to Offset 20 years of Consumptive Use
- Quantify/Develop Projects and Actions as Offsets

<u>Step 3</u> Calculate New Domestic Permit-Exempt Well Connections

- By County, by sub-basin
- Cities, Towns to weigh in on PE well policies within their jurisdictions and UGAs
- PUDs provide information on available connections
- Dept of Health Sentry database, other options to ID available connections in existing Group A and B systems

Total Estimated New Permit-Exempt Connections Aggregated by Sub-basin

Sub-basin	UGA	Rural	Total
	Connections	Connections	Connections
McAllister	39	116	155
Thompson/Yelm	1,036	526	1,562
Lackamas/Toboton/Powe		430	430
Lower Nisqually		2	2
Mashel River		20	20
Prairie Tributaries		596	596
Ohop Creek		27	27
Upper Nisqually (Lewis, Pierce, Thurston)		195	195
Total	1,075	1,912	2,987

<u>Step 3</u>

Calculate new domestic permit-exempt connections, 2018-2040

- ✓ Approve Proposed Sub-basins
- Estimate 20-Year Population Growth and New Dwelling Units(Optional Decision Point)
- Calculate New Domestic Permit-Exempt <u>Connections</u> (Optional Decision Point)
- Estimate Consumptive Use (3 methods)
- Identify Projects and Actions to Offset 20 years of Consumptive Use
- Quantify/Develop Projects and Actions as Offsets

Estimate Consumptive Water Use by PE Connections

Step	4
------	---

Estimate Consumptive Use

	Annual AverageConsumptiveUse per connection (gpd)TotalOutdoor		
Actual Water Use – Thurston PUD Method	95 gpd	80 gpd outdoor	
Ecology Method	223 gpd	208 gpd outdoor	
Legal Method	1,644 gpd	1,536 gpd outdoor	

Ecology guidance:

- 10% indoor use is consumptive
- 80% outdoor use is consumptive

Possible Committee Decisions

Estimate Consumptive Use

- Methodology (Actual, Ecology, Legal, other)
- Average Annual Basis or other (consider how you will compare to streamflow)
- Indoor per person water use (Ecology Guidance 60 per person per day)
- Outdoor irrigable land (assume 1/2 acre or determine specific average area with GIS analysis)
- Crop type and irrigation requirements
- Irrigation efficiency percentage
- Assumed consumptive portion of total use (Ecology Guidance -10% indoor, 80% outdoor)

WRIA 11 – Consumptive Use Results

			Annual		
		Total PE	Consumptive	Cubic	cfs per
	Sub-Basin	Connections	Use (AFY)	feet/second	connection
ic	McAllister	155	39	0.054	
ell	Thompson/Yelm	1,562	390	0.539	
ns	Lackamas/Toboton/				
Ve	Powell	430	107	0.148	
Se	Lower Nisqually River	2	0	0.001	
ίO	Mashel River	20	5	0.007	
]D	Prairie Tributaries	596	149	0.206	
	Ohop Creek	27	7	0.009	
	Upper Nisqually (all				
	counties)	195	49	0.067	
	Total	2,987	747	1.032	0.0003453

Estimate New Domestic Permit-exempt Well Connections and Associated Consumptive Use 2018 – 2040 ECOLOGY METHOD

WRIA 11 – Micro and Macro Approach to Offsets Based on Consumptive Use Methodology

Step 4 3 METHODS to Calculate Consumptive Water Use

	Nisqually Watershed: Projected Annual Average Consumptive Use		
	(AFY)	(CFS)	
Actual Water Use – Thurston PUD	318	0.439	
Ecology Method	747	1.032 Miche	
Legal Method	5,501	7.598 Macro	

USGS – McKenna Gage on Nisqually River August Mean Discharge, 2000-2010

Watershed Offset Requirement

- ✓ Approve Proposed Sub-basins
- Estimate 20-Year Population Growth and New Dwelling Units(Optional Decision Point)
- Calculate New Domestic Permit-Exempt <u>Connections</u> (Optional Decision Point)
- ✓ Consumptive Use (3 methods)
- Identify Projects and Actions to Offset 20 years of Consumptive Use
- Quantify/Develop Projects and Actions as Offsets

WRIA 11 – Micro and Macro Approach to Offsets

<u>Step 5</u>

Identify Offset Projects and Actions

> Micro Mitigation (Offsets)

- City of Yelm Water Right Offset (future + current)
- ➢ Water System Improvements (Group A and B)
- Water Right Acquisition
- Reclaimed Water Infiltration
- Local Stream Restoration Lower Sub-basins
- Managed Aquifer Recharge (MAR)
- Update County permitting processes policies for Implementation - bank, credit system

Projects had varying levels of development: some conceptual, some quantitative

WRIA 11 – Micro and Macro Approach to Offsets

<u>Step 5</u>

Watershed Scale Offsets

Macro Mitigation (Offsets)

- Address Major Barriers to Salmon Recovery
- Community Managed Forests (VELMA Model)
- Large Scale Floodplain and Riparian Restoration & Protection Projects (Ohop Creek)
- Mashel River Baseflow Strategies Eatonville Infrastructure Improvements

Projects had varying levels of development: some conceptual, some quantitative

It is very important to coordinate Salmon Recovery efforts and Water Resource/ISF efforts!

Start the Conversation Early!

Salmon Recovery Habitat Initiatives as Offsets

Salmon Recovery Initiative	Priority	Sub-Basin	Key Actions
Mashel Watershed Recovery/	1	Mashel	Acquire commercial forestland to place in conservation management
Community Forest			for streamflow enhancement
Ohop Watershed Recovery/	7	Ohop	Acquire commercial forestland to place in conservation management
Community Forest			for streamflow enhancement
Bald Hills Watershed Recovery/	8	Lack/Tob/Powell	Acquire commercial forestland to place in conservation management
Community Forest			for streamflow enhancement
Mashel Base Flow	2	Mashel	Implement Town of Eatonville stormwater and infrastructure
			improvements
Ohop Valley Floodplain	3	Ohop	Restore 3.1 miles of channelized stream and 710 acres of riparian
Restoration			and floodplain habitat
Mashel River Riparian Corridor	4	Mashel	Protect riparian corridor and restore habitat complexity through log
Protection and Restoration			jams and riparian plantings
Muck Creek Recovery*	5	Prairie Tributaries	Restore up to 60 miles of impaired streams and surrounding
			floodplain/wetland habitat; maintain hydrologic function of prairie
			ecosystem through prescribed burns
	6	Prairie Tributaries,	Restore up to 20 miles of impaired streams and surrounding
Prairie Tributaries Recovery*		Thom/Yelm,	floodplain/wetland habitat; maintain hydrologic function of prairie
		Lack/Tob/Powell	ecosystem through prescribed burns
Barrier Removal*	9	Multiple	Remove fish passage barriers

Ohop Creek Restoration

Consumptive Use (Ecology Method) Compared to Minimum and Maximum Estimated Offsets (See Table 7-2)

	ECY Method		
	Annual PE	Offset	Offset
	Consumptive	Actions (cfs)	Actions
Sub-basin	Use (cfs)	MIN	(cfs) MAX
McAllister	0.054	TBD	TBD
Thompson/Yelm	0.539	0.479	1.050
Lackamas/Toboton/Powell	0.148	0.116	0.697
Lower Nisqually	0.001	0	0.552
Mashel River	0.007	3.48	7.27
Prairie Tributaries	0.206	0.058	2.058
Ohop Creek	0.009	0.017	2.105
Upper Nisqually (Pierce, Lewis,			
Thurston)	0.067	0.067	0.619
TOTAL	1.03	4.22	14.35

- Don't forget the Actions
- Track Potential Actions throughout the process
 - Consider PE well connection policies (cities, towns, PUDs)
 - Consider PE well replacement opportunities
 - Tracking system
 - Track PE wells development vs. Offsets
 - Track credits (eg., well abandonment, other)
 - Ensure that offsets keeps up with well

- Nisqually Plan Addendum did not provide full analysis of all projects or their probability of occurring per interim NEB guidance
- Nisqually Planning Unit Core Strategy
 - Micro-offset projects provide sub-basin specific offsets
 - In coordination with the Nisqually Salmon Recovery Strategy, macro-offset projects recommended will, in combination with 'micro projects' and actions, provide NEB

Net Ecological Benefit (NEB)

- This addendum to the Nisqually Watershed Plan identifies specific mitigation strategies and policy recommendations designed to offset the impacts that new PE wells may have on streamflows or other senior water rights. It also, in coordination with the Nisqually Salmon Recovery Strategy, makes recommendations for habitat projects that will, in combination with mitigation strategies, provide NEB for streamflows in the Nisqually Watershed" (Nisqually PU, 2019).
- * "While the WRIA 11 watershed plan Addendum does not adhere to Ecology's guidance documents.... Taken as a whole, the results indicate that relative to the detriments created by future permit-exempt domestic wells anticipated in WRIA 11 over the next 20 years, the offset strategies proposed would result in a NEB for the watershed."

- Ecology Technical Review, January 29, 2019

WRIA 11 – Ecology Determination of NEB

The Plan Addendum provides varying levels of details and analyses (for the 22 strategies presented) . . . In light of the conceptual nature of much of the plan's description of strategies, Ecology's technical review segregated the strategies into 3 tiers."

- *Adoption with Conditions
 - Annual Reporting
 - Five Year Self Assessment
 - Ongoing Compliance with RCW 90.94.020 (recording and reporting requirements)

Ecology Review

- ✓ Approve Proposed Sub-basins
- Estimate 20-Year Population Growth and New Dwelling Units(Optional Decision Point)
- Calculate New Domestic Permit-Exempt <u>Connections</u> (Optional Decision Point)
- Set imate Consumptive Use (method and assumptions)
- Identify Projects and Actions to Offset 20 years of Consumptive Use
- Quantify/Develop Projects and Actions as Offsets

WRIA 11 – Basic Steps to Implementing RCW 90.94.020

<u>Step 6</u> Quantify/Develop Projects & Actions as Offsets

Next Steps

- Planning Unit is doing this now through December, moving toward implementation
- Re-evaluating priorities from Tiers determined by Ecology in their NEB evaluation
- Considering implementation barriers, multiple benefits, concerns regarding MAR effectiveness, and unintended consequences of water purchase on Ag.
- Find Funding: Good Plan, Needs Action/investment
- Accounting System??: How do we ensure offsets keep pace with growth? 3 Counties one

Lessons Learned

- Focus time and effort on developing robust offset actions providing multiple benefits - Offset Projects
- 20 years of domestic PE Consumptive Use is a relatively small impact to streamflow conservatively estimate and move on to the important part
- Work collaboratively with local salmon groups overcome the language barrier between Water Resource and Salmon Recovery Scientists
- > QUANTIFY your offsets
- > Aim for multiple benefits, multiple goals, and consider reaching big
- TRUST and PARTNERSHIPS and HISTORY of collaboration MATTER

Thank You!

Lisa Dally Wilson, PE

(206) 915-9551