

Soil Cleanup Levels For Unrestricted Land Use

Table 740-1

Notes on Developing Method A Table Values Washington State Department of Ecology Clarc Notes

Method A Notes.doc

Notes on the Development of Method A Cleanup Levels WAC 173-340-720, 740, and 745

The following tables were prepared as part of the rule-making process for the amended MTCA rule adopted February 12, 2001. The information in the tables was used when Ecology developed the Method A Cleanup Levels for the revised regulation.

The tables compile cleanup level calculations for various exposure pathways for both carcinogenic and noncarcinogenic heath effects, applicable state and federal laws, laboratory practical quantitation limits and other relevant information that was used to develop the Method A cleanup levels. While this is useful background information, the values in these tables are not the adopted rule and should not be used as Method A cleanup levels. Use the tables, footnotes and accompanying text in the adopted regulation to develop Method A cleanup levels.

NOTE: Some columns in these tables refer to "current" and "proposed" Method A values. "Current" as used in these tables refers to the cleanup levels as they existed prior to the adoption of the February 12, 2001 rule amendments. "Proposed" as used in these tables are the cleanup levels that were adopted on February 12, 2001.

February 9, 2001 November 23, 2004 revision (1)

TO: Interested Persons

FROM: Pete Kmet, Senior Environmental Engineer

Toxics Cleanup Program

SUBJECT: Calculations for Table 740-1

Method A Soil Cleanup Levels for Unrestricted Land Uses

Attached are several tables in excel format providing information on the development of the Method A soil cleanup levels for unrestricted land uses in Table 740-1, WAC 173-340-900.

Table 1: A quick summary providing Method A cleanup levels for unrestricted land uses (Table 740-1) and a brief explanation of the reasoning in the development of Method A values.

<u>Table 2:</u> A detailed compilation of the information considered in the development of Method A soil cleanup levels for unrestricted land uses. This information includes:

- The Method B direct contact exposure pathway soil values for each substance.
 This includes values for both soil ingestion and soil ingestion plus dermal adsorption (adsorption through the skin) for both carcinogens and non-carcinogens, where sufficient information was available for the calculations as of February, 2001;
- The results for the soil leaching pathway from the 3 and 4 phase models as of February, 2001;
- Terrestrial ecological evaluation values from Tables 749-2 and 749-3;
- Regulatory values from other laws as of February, 2001; and
- Natural background, practical quantitation limits and other relevant information available as of February, 2001.

<u>Table 3:</u> Describes the assumptions used to calculate the standard Method B soil direct contact cleanup values for unrestricted land uses for carcinogens using equation 740-2 in WAC 173-340-740(3)(b)(iii)(B)(II).

<u>Table 4</u>: Describes the assumptions used to calculate the standard Method B soil direct contact cleanup values for unrestricted land uses for non-carcinogens using equation 740-1 in WAC 173-340-740(3)(b)(iii)(B)(I).

<u>Table 5</u>: Describes the assumptions and equation used to calculate the modified Method B values for unrestricted land uses assuming concurrent soil ingestion plus dermal (skin) absorption for carcinogens using equation 740-5 in WAC173-340-740(3)(b)(iii)(B).

<u>Table 6</u>: Describes the assumptions and equation used to calculate the modified Method B values for unrestricted land uses assuming concurrent soil ingestion plus dermal (skin) absorption for <u>non</u>carcinogens using equation 740-4 in WAC173-340-740(3)(b)(iii)(A).

<u>Table 7</u>: Describes the assumptions and equations used to calculate soil concentrations protective of ground water for drinking water use, using the 3 phase leaching model.

<u>**Tables 8-10:**</u> 4-phase model results summary sheets for 2 brands of fresh gasoline and these same gasolines using various weathered compositions.

(1) This memo and attached excel tables explain the basis for the Method A cleanup levels in the MTCA rule adopted February 12, 2001. The memos and tables have been slightly revised from the originals issued on February 9, 2001 to clarify certain information in response to questions received since issuance of the original memos and tables. The original memos and tables can be found in appendix D of the concise explanatory statement for the February 12, 2001 rule amendments (http://www.ecy.wa.gov/programs/tcp/regs/reg_main.html)

	Table	1: Quick S	Summary	Basis for Method A, Table 740-1, Unrestricted Land Use Soil Values
Hazardous Substance	CAS Number	1991 Method A Cleanup Level mg/kg	2001 adopted Method A Cleanup Level mg/kg	Basis for Standard
	1 =		T	
Arsenic Benzene	7440-38-2 71-43-2	20.0 0.5	20 0.03	Soil ingestion using equation 740-2, and leaching using 3-phase model, adjusted for natural background (1). Protection of drinking water based on both 3 and 4 phase models.
Benzo(a)Pyrene	50-32-8 7440-43-9	none 2	0.1 2	Soil ingestion using equation 740-2. This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). Protection of drinking water, adjusted for PQL.
Cadmium	7440-43-9		2	Protection of drinking water, adjusted for PQL.
Chromium (total)	7440-47-3 18540-29-9	100.0	none 19	Replaced by values for Cr III and Cr VI. Protection of drinking water3 phase model.
Chromium VI	16065-83-1		2000	Protection of drinking water3 phase model.
Chromium III DDT Ethylbenzene	50-29-3 100-41-4	1 20.0	3 6	Soil ingestion using equation 740-2. Protection of drinking water-3 phase model.
Ethyloonizone	100 41 4	20.0	Ů	i folicition of difficulty water of practice models.
Ethylene dibromide (EDB) Lead	106-93-4 7439-92-1	0.001 250.0	0.005 250	Protection of drinking water3 phase model, adjusted for PQL. Soil ingestion. See 1991 responsiveness summary for explaination of calculation. (1)
Lindane	58-89-9	1	0.01	Protection of drinking water3 phase model, adjusted for PQL.
Methylene chloride	75-09-2	0.5	0.02	Protection of drinking water3 phase model.
Mercury (inorganic)	7439-97-6	1	2	Protection of drinking water3 phase model.
MTBE	1634-04-4	none	0.1	Protection of drinking water3 phase model.
Naphthalenes PAHs (carcinogenic)	91-20-3	none 1.0	5 none	Protection of drinking water3 phase model. Total of all naphthalene, 1-methyl naphthalene and 2-methyl naphthalene. Replaced by Benzo(a)Pyrene, above.
PCB Mixtures	1336-36-3	1	1	ARAR. This is a total value for all PCBs in the soil sample.
Tetrachloroethylene	127-18-4	0.5	0.05	Protection of drinking water3 phase model.
Toluene 1,1,1 Trichloroethane	108-88-3 71-55-6	40.0 20	7 2	Protection of drinking water3 phase model. Protection of drinking water3 phase model.
Triablereathylene	79-01-5	0.5	0.03	Distortion of displace water 2 phase model
Trichloroethylene Xylenes	1330-20-7	20.0	0.03 9	Protection of drinking water3 phase model. Protection of drinking water3 phase model. Total of all m, o & p xylene.
TPH (total)	14280-30-9			
Gasoline range organics GRO with benzene	6842-59-6	100	30	Protection of drinking water4 phase model, assuming weathered gasoline composition.
GRO w/o benzene		100	100 (3)	Protection of drinking water4 phase model, assuming highly weathered gasoline composition.
Diesel Range Organics		200	2000	Protection of drinking waterresidual saturation
Heavy Oils Electrical Insulating Mineral Oil		200 200 (2)	2000 4000	Protection of drinking waterresidual saturation for diesel. Protection of drinking waterresidual saturation

⁽¹⁾ Ecology decided not to change 1991 Method A value although the "natural background" value of 20 is now known to be based on data from areas impacted by the former Tacoma smelter. Ecology intends to review and, if appropriate, update these values in a future rulemaking.

⁽²⁾ Ecology also issued a fact sheet in 1995 (#95-157-TCP) allowing the use of 2000 mg/kg at electrical substations and switchyards. With the adoption of the rule in 2001, this fact sheet has been withdrawn.

⁽³⁾ To use this value no benzene must be present in the soil and the total of ethyl benzene, toluene & xylene must be less than 1% of the gasoline mixture.

lethod A Soil Cleanup Leve	ls -for Unrestrict	ed Land Uses								
		1991			Dermal +	Dermal +	Leaching	100 X		
		Method A	Ingestion	Ingestion	Ingestion	Ingestion	3-Phase	Ground water		
Hazardous Substance	CAS Number	Cleanup Level	Carcinogen	Noncarc.	Carcinogen	Noncarc.	M odel	C/U level	Vapor	Other
		mg/kg (1)	mg/kg (2)	mg/kg (3)	mg/kg (4)	mg/kg (5)	mg/kg (6)	mg/kg (7)	mg/kg (8)	mg/kg (9)
Arsenic	7440-38-2	20.0	0.67	24	0.62	22	2.9	0.5		
Benzene	71-43-2	0.5	34	240	34		0.028	0.5		0.028
Benzo(a)Pyrene	50-32-8	none	0.14		0.10		0.23/1.9 (11)	0.01		
Cadmium	7440-43-9	2.0		80		74	0.69	0.5		
Chromium (total)	7440-47-3	100.0								
	18540-29-9			240		128	19	5		100
Chromium VI	16065-83-1			120,000		45,000	2,000	10		
Chromium III DDT	50-29-3	1.0	2.9	40	2.7	37	4.1	0.03		
Ethylbenzene	100-41-4	20.0		8,000		7,400	6.1	70		
Ethylene dibromide (EDB)	106-93-4	0.001	0.012		0.011		0.00005	0.001		
_ead	7439-92-1	250.0		250/370(10)			3,000	1.5		
indane	58-89-9	1.0	0.77	24	0.65	20	0.0062	0.02		
Methylene chloride	75-09-2	0.5	130	4,800	130	4,800	0.022	0.5		
Mercury (inorganic)	7439-97-6	1.0		24		18	2.1	0.2		
MTBE	1634-04-4	none					0.085	2		
Naphthalene	91-20-3	none		1,600		1,200	4.5	16		
PAHs (carcinogenic)(11)		1.0	0.14		0.10		0.23/1.9 (11)	0.01		
PCB Mixtures (12)	1336-36-3	1.0	0.5/2.5/14	1.6/5.6	0.4/1.8/10	1.2/4.1	0.2/1.6	0.01		
Tetrachloroethylene	127-18-4	0.5	20	800	18	740	0.053	0.5		
Toluene	108-88-3	40.0		16,000		15,000	7.3	100		
1,1,1 Trichloroethane	71-55-6	20.0		72,000		72,000	1.6	20		
Trichloroethylene	79-01-5	0.5	91		84		0.033	0.5		
Kylenes	1330-20-7	20.0		160,000		150,000	9.1	100		
1) From WAC 173-340-740 T	able 2 [1/26/06 rev	vicion		+						
2) Calculated using equation		visiorij.								
3) Calculated using equation	740-1.									
Calculated using equation										
5) Calculated using equation6) Calculated using equation								Paralus for P(s)		
7) Calculated using equation 7) Calculated using 1991 met						00 ppb and for FA	i is used ivietifod	b value for b(a)		
Vapor values not calculate		grania nan								
9) Benzene from 4 phase lead										
10) 1st value using IEUBK mo									ith EPA defaults.	
in proposed Table 72		3-priase model resu	its is using the ivie	trioa B grouna	water cleanup i	evei, the second va	alue is using the i	vietnod A value		
12) PCB values based on var		d IRIS values for PC	B mixtures.							
							-			
							1			
				1						
	1				1		1	1.1	1	

Table 2										
	Summary	Table of Exp	osure Path	ways Cor	sidered in I	Establishin	g the Method	A Soil Cle	anup V	alues in Table 740-1
Method A Soil Cleanup Levels	-for Unrestrict	ed Land Uses								
		1991		Dermal +	Leaching		100 X			
		Method A	Ingestion	Ingestion	Using	Residual	Ground water			
Hazardous Substance	CAS Number	Cleanup Level	Noncarc.	Noncarc.	4-phase Model	Saturation	C/U level	Vapor		
		mg/kg (1)	mg/kg (2)	mg/kg (3)	mg/kg (4)	mg/kg (5)	mg/kg (6)	mg/kg (7)		
TD11 (1-1-1)	4 4000 00 0									
TPH (total)	14280-30-9						+			
Gasoline range organics	6842-59-6	100								
GRO with benzene			4,700	4,700	1 / 23 to 28	1,000	80	unknown		
GRO without benzene					105	1,000	100	unknown		
Diesel Range Organics		200	3,900	3,000	No upper limit	2,000	50	>10,000		
Heavy Oils (8)		200	3,900	3,000	No upper limit	2,000	50	>10,000		
Electrical Insulating Mineral Oil		200 (9)	7,800	5,800	No upper limit	4,000	100	Not volatile		
		, ,	,	.,		,,,,,,				
(1) From WAC 173-340-740 Tal										
(2) Calculated using surrogates.										
(3) Calculated using surrogates										
(4) Calculated using 4 phase me										
For GRO without benzene,	assumes no beni	zene present in gas	oline mixture and	that ethyl ben	zene, toluene and	d xylene are less	than 1% of the gas	oline mixture.		
For diesel, heavy oils and m	ineral oil, "no up	per limit" means HI	of 1 never excee	ded. This is tru	ue only if the soil i	is above the water	r table.			
(5) Residual saturation for coars										
(6) Calculated using 1991 method										
(7) Gasoline vapors not calculate					e for vanor nathw	av Diesel vanor	e hacad on gualita	tive observation	e at citae hy	ΡΙΙΔ
(8) Based on diesel composition		Wethou A value of	100 ppin thought	o be protectiv	e ioi vapoi patriw	ay. Diesei vapoi	3 Dased Oil qualita	iive observation	at sites by	I LIA.
(9) Ecology also issued a fact sl		AFZ TOD) allausia	- thf 2000		riaal audaatiaaa		Mith the edention	af 4h a mula in 20	04 this fac	ahaat baa baas with daawa
(9) Ecology also issued a fact si	1995 (#9	5-157-1CF) allowing	g trie use of 2000	ilig/kg at elect	lical substations a	and Switchyards.	with the adoption	of the fulle in 20	UI, IIIIS IAC	Sheet has been withdrawn.
								+		
	-									

Manchal A Soil Cleanup Lavels - for Unrestricted Land Uses	Table 2	: Summary	y Table of Exp	osure Pathw	ays Cons	sidered in	Establishing	the Method	I A Soil Cle	anup V	alues in Table 740-1
Ecological Ecological Simplified Indicator Most Stringent Controlling Hazardous Substance Evaluation Concentration More Controlling Most Stringent Controlling More Controlling Most Stringent Controlling Most Stri	Mathad A Sail Cleanum Laval	a faullmusstnist	and I and I lane			T			<u> </u>	-	
Method A Adopted Basis	Method A Soil Cleanup Level	s -for Unrestrict	ted Land Uses								
Method A Adopted Basis		Ecological	Ecological						1991	2001	
Markeric 20 7 mg/kg (2) mg/kg (2) mg/kg (3) mg/kg (4) mg/kg (3) mg/kg (3) mg/kg (3) mg/kg (3) mg/kg (3) mg/kg (4) mg/kg (3) mg/kg (4) mg/kg (3) mg/kg (4) mg/kg				Most Stringent	Controlling						Basis
Agencie 20 7	Hazardous Substance	Evaluation	Concentration	Non-Eco Path	Non-Eco	ARARs		Background	Cleanup Level	Method A	
Benzota Pyrene 30 12 0.1 Ingestion 0.05 (SW8260B) 0.5 0.03 Protection of drinking water-4 phase model		mg/kg (1)	mg/kg (2)	mg/kg	Pathway	mg/kg	mg/kg (3)	mg/kg (4)	mg/kg	mg/kg	Standard
Benzo(a)Pyrene 30 12 0.1 Ingestion 0.05 (SW8270C) none 0.1 Ingestion (7)	Arsenic	20	7	0.7	Ingestion		1 (SW7060)	7 & 20	20	20	Natural background. (5)
Cadmium	Benzene			0.03	Leaching		0.005 (SW8260B)		0.5	0.03	Protection of drinking water4 phase model
Chromium (total)	Benzo(a)Pyrene	30	12	0.1	Ingestion		0.05 (SW8270C)		none	0.1	Ingestion (7)
19	Cadmium	25	4	0.69	Leaching		2 (SW6010A)	1	2.0	2	Leaching, adjusted for PQL. (6)
19	Chromium (total)	42	42				2 (SW6010A)	42	100		
Symplem 1	Omormani (total)			19	Leaching					19	Protection of drinking water3 phase model.
Ethylbenzene	Chromium VI			2,000							
Ethylbenzene	Shremium III	1	0.75	2.9	Ingestion		0.05 (SW8081)		1.0	3	Ingestion.
Ethylene dibromide (EDB)	Ethylbenzene	1	55								
Lindane 10 6 0.0062 Leaching 0.01 (SW8081) 1.0 0.01 Leaching, adjusted for PQL Methylene chloride 0.022 Leaching 0.005 (SW8260B) 0.5 0.02 Protection of drinking water-3 phase model. Mercury (inorganic) 9 0.1 2.1 Leaching 0.005 (SW8260B) 0.05 (SW8260B) 0.1 2.2 Protection of drinking water-3 phase model. Maphthalenes 0.085 Leaching 0.005 (SW8260B) 0.005 (SW8260B											-
Lindane 10 6 0.0062 Leaching 0.01 (SW8081) 1.0 0.01 Leaching, adjusted for PQL		220	50					17			
Metruy (inorganic) 9 0.1 2.1 Leaching 0.005 (SW8260B) 0.5 0.02 Protection of drinking water-3 phase model. 0.085 Leaching 0.005 (SW8260B) 0.7 0.07 0.0 2 Protection of drinking water-3 phase model. 0.085 Leaching 0.005 (SW8260B) 0.005 (SW8								• •			9 , ,
Mercury (inorganic) 9 0.1 Mercury (inorganic) 1.0 Mercury (inorganic) 1.		10									
Naphthalenes Na											-
Naphthalenes 4.5 Leaching 0.5 (SW8260B) none 5 Protection of drinking water3 phase model. (SPAHs (carcinogenic) 30 12 0.1 Ingestion 0.05 (SW8270C) 1.0 none Replaced with benzo(a)pyrene. PCB Mixtures 2 0.65 0.2 Leaching 0.005 (SW8260B) 1.0 1 ARAR (8) Tetrachloroethylene 0.05 (SW8260B) 0.5 0.5 0.05 Protection of drinking water3 phase model. (1,1,1 Trichloroethalene 1.6 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. (1,1,1 Trichloroethylene 0.033 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. (1) Value from Table 749-2 for unrestricted land use. For reference only, not used in developing Method A values. (2) Most stringent indicator value from Table 749-3. For reference only, not used in developing Method A values. (3) From Manchester Lab (4) For arsenic, 1st value from upper 90% for WA State, documented in report #94-115 and 2nd value from a 1989 report by PTI Environmental Services. All others upper 90% in WA State from report # 94-115. (6) Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. (6) For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW7131 and 2 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. (7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8).		9	0.1					0.07			
PAHs (carcinogenic) 30 12 0.1 Ingestion 0.05 (SW8270C) 1.0 none Replaced with benzo(a)pyrene. PCB Mixtures 2 0.65 Tetrachloroethylene 200 7.3 Leaching 0.005 (SW8260B) 0.5 0.05 Protection of drinking water-3 phase model. 1,1,1 Trichloroethane 200 7.3 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water-3 phase model. 1,6 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water-3 phase model. 1,6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water-3 phase model. 1,7 Trichloroethylene 0.033 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water-3 phase model. 1,8 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water-3 phase model. 1,9 Protection of drinking water-3 phase model. 1,0 None Replaced with benzo(a)pyrene. 1,0 None Replaced with personal pyrene. 1,0 None Replaced with benzo(a)pyrene. 1,0 None Replaced with personal pyrene. 1,0 None Replaced with personal pyrene. 1,0 None Replaced with post park park park park pyrene. 1,0 None Replaced with pyrene. 1,0 None Replaced with py							` ′				
PCB Mixtures 2 0.65 Tetrachloroethylene 200 1.1.1 Trichloroethane 200 7.3 Leaching 0.005 (SW8260B) 0.5 0.05 Protection of drinking water3 phase model. Trichloroethylene 200 7.3 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. Trichloroethylene 200 1.6 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. Trichloroethylene 200 2 Protection of drinking water3 phase model. Trichloroethylene 200 2 Protection of drinking water3 phase model. Nylenes 0.033 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. 1.0 0.33 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 1.1.1 Trichloroethylene 200 2.0 Protection of drinking water3 phase model. Nylenes 0.031 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 1.1.2 Trichloroethylene 200 2 9 Protection of drinking water3 phase model. 1.2 Most stringent indicator value from Table 749-3. For reference only, not used in developing Method A values. 1.3 From Manchester Lab 0 0.05 (SW8260B) 20 9 Protection of drinking water3 phase model. 1.5 Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. 1.6 Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. 1.7 This can also be used as the total toxic equivalents for all CPAHs. See WAC 173-340-708(B). 1.8 CIPATURE 200 AND											
Toluene 200 7.3 Leaching 0.005 (SW8260B) 0.5 0.05 Protection of drinking water3 phase model. 7.3 Leaching 0.005 (SW8260B) 40 7 Protection of drinking water3 phase model. 7.3 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. 7.3 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. 7.3 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 7.3 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 7.3 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 7.3 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 7.4 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 7.5 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 7.5 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 7.6 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 7.7 Leaching 0.005 (SW8260B) 20 9 Protection of drinking water3 phase model. 8.6 For arsenic, 1st value from Table 749-3. For reference only, not used in developing Method A values. 9.1 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.1 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.1 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.1 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.1 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.2 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.3 From Manchester Lab 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.4 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.5 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 9.6 For arsenic, 1st value from upper 90% for WA State from report #94-115 and 2nd values for a leaching of the value	PAHs (carcinogenic)	30	12	0.1	Ingestion		0.05 (SW8270C)		1.0	none	Replaced with benzo(a)pyrene.
Toluene 200 7.3 Leaching 0.005 (SW8260B) 40 7 Protection of drinking water3 phase model. 1.1,1 Trichloroethylene Xylenes 0.033 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.7 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.8 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.9 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 2.0 Wost stringent indicator value from Table 749-3. For reference only, not used in developing Method A values. 2.0 Most stringent indicator value from Table 749-3. For reference only, not used in developing Method A values. 3.0 From Manchester Lab 0 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 4.1 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 5.2 For reference only, not used in developing Method A values. 6.3 From Manchester Lab 0 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 5.2 For reference only, not used in developing Method A values. 6.3 From Manchester Lab 0 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 6.4 For arsenic, 1st value from Table 749-3. For reference only, not used in developing Method A values. 6.5 Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. 6.5 Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. 6.5 Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. 6.6 For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. 7.7 This can also be used as the total toxic equivalents for all cPAHs. See		2	0.65			1.0					
1.6 Leaching 0.005 (SW8260B) 20 2 Protection of drinking water3 phase model. Trichloroethylene 0.033 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. Yelenes 0.015 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.05 (SW8260B) 0.5 0.05 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1.6 Leaching 0.005 (SW8260B) 0.5 0.05 (SW8260	Tetrachloroethylene			0.05	Leaching		0.005 (SW8260B)		0.5	0.05	Protection of drinking water3 phase model.
Trichloroethylene 0.033 Leaching 0.005 (SW8260B) 0.5 0.03 Protection of drinking water3 phase model. 1) Value from Table 749-2 for unrestricted land use. For reference only, not used in developing Method A values. 2) Most stringent indicator value from Table 749-3. For reference only, not used in developing Method A values. 3) From Manchester Lab	Toluene		200	7.3			0.005 (SW8260B)		40	7	Protection of drinking water3 phase model.
Xylenes 9.1 Leaching 0.015 (SW8260B) 20 9 Protection of drinking water3 phase model. (1) Value from Table 749-2 for unrestricted land use. For reference only, not used in developing Method A values. (3) From Manchester Lab (4) For arsenic, 1st value from upper 90% for WA State, documented in report #94-115 and 2nd value from a 1989 report by PTI Environmental Services. All others upper 90% in WA State from report #94-115. (5) Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. (6) For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. (7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). (8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).	1,1,1 Trichloroethane			1.6	Leaching		0.005 (SW8260B)		20	2	Protection of drinking water3 phase model.
(1) Value from Table 749-2 for unrestricted land use. For reference only, not used in developing Method A values. (2) Most stringent indicator value from Table 749-3. For reference only, not used in developing Method A values. (3) From Manchester Lab (4) For arsenic, 1st value from upper 90% for WA State, documented in report #94-115 and 2nd value from a 1989 report by PTI Environmental Services. All others upper 90% in WA State from report #94-115. (5) Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. (6) For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. (7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). (8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).	Trichloroethylene			0.033	Leaching		0.005 (SW8260B)		0.5	0.03	Protection of drinking water3 phase model.
(2) Most stringent indicator value from Table 749-3. For reference only, not used in developing Method A values. (3) From Manchester Lab (4) For arsenic, 1st value from upper 90% for WA State, documented in report #94-115 and 2nd value from a 1989 report by PTI Environmental Services. All others upper 90% in WA State from report #94-115. (5) Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. (6) For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. (7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). (8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).	Xylenes			9.1	Leaching		0.015 (SW8260B)		20	9	Protection of drinking water3 phase model.
(2) Most stringent indicator value from Table 749-3. For reference only, not used in developing Method A values. (3) From Manchester Lab (4) For arsenic, 1st value from upper 90% for WA State, documented in report #94-115 and 2nd value from a 1989 report by PTI Environmental Services. All others upper 90% in WA State from report #94-115. (5) Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. (6) For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. (7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). (8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).											
(3) From Manchester Lab (4) For arsenic, 1st value from upper 90% for WA State, documented in report #94-115 and 2nd value from a 1989 report by PTI Environmental Services. All others upper 90% in WA State from report # 94-115. (5) Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. (6) For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. (7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). (8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).											
(4) For arsenic, 1st value from upper 90% for WA State, documented in report #94-115 and 2nd value from a 1989 report by PTI Environmental Services. All others upper 90% in WA State from report # 94-115. (5) Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. (6) For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. (7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). (8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).		ue from Table 74	9-3. For reference or	nly, not used in dev	eloping Meth	od A values.					
(5) Ecology decision not to change at this time. Ecology intends to review and, if appropriate, update these values in a future rulemaking. (6) For cadmium, there are two possible PQLs: 0.1 PPM using SW7131 and 2 PPM using SW6010A. The later has been used since this is the more commonly used test method. (7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). (8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).		upper 90% for W	A State documented	in report #94-115	and 2nd value	e from a 1989 i	report by PTI Enviro	nmental Services	All others upp	er 90% in V	VA State from report # 94-115
(7) This can also be used as the total toxic equivalents for all cPAHs. See WAC 173-340-708(8). (8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).											
(8) Cleanup level is sum of all PCBs. ARAR is for high occupancy areas with no cap, from 40 CFR Part 761.61 (EPA rule governing disposal and cleanup of PCB contaminated facilities under TSCA).						. The later has	s been used since th	nis is the more co	mmonly used te	st method.	
(9) This is a total of all naphthalene, 1-Methyl naphthalene & 2-Methyl Naphthalene. Also, use SW 82/OC to measure all three types of naphthalene.									p of PCB conta	minated fac	cilities under TSCA).
	(9) This is a total of all naphtha	lene, 1-Methyl na	aphthalene & 2-Methy	/I Naphthalene. Als	so, use SW 82	270C to measu	re all three types of	naphthalene.			
		+							+		
		+							+		
									1		
									1		

Method A Soil Cleanup Levels	-for Unrestrict	ed Land Uses						TT .		
metrica A con oleanap Levels	TOT OTHESTITIO	icu Luna Ooco								
	Ecological	Ecological						1991	2001	
	Simplified	Indicator	Most Stringent	Controlling				Method A	Adopted	Basis
Hazardous Substance	Evaluation	Concentration	Non-Eco Path		ARARs	PQL	Background	Cleanup Level		for
	mg/kg (1)	mg/kg (2)	mg/kg	Pathway	mg/kg	mg/kg (3)	mg/kg	mg/kg	mg/kg	Standard
TPH (total)										
Gasoline range organics										
GRO with benzene	200	100	23 to 28	Leaching		5 (NWTPH-Gx)	0	100	30	Protection of drinking water (4)
GRO without benzene	200	100	105	Leaching		5 (NWTPH-Gx)	0	100	100	Protection of drinking water (5)
Diesel Range Organics	460	200	2000	Leaching		25 (NWTPH-Dx)	0	200	2000	Residual Saturation
Heavy Oils (6)	460	200	2000	Leaching		100 (NWTPH-Dx)	0	200	2000	Residual Saturation
Electrical Insulating Mineral Oil			4000	Leaching		100 (NWTPH-Dx)	0	200 (7)	4000	Residual Saturation
(1) (1) (1) (1) (1)										
(1) Value from Table 749-2 for un(2) Most stringent indicator value										
(3) From Manchester Lab.	TIOTI TABLE 74	3-3. 1 01 Telefelice (nny, not asea in ae	veloping Meth	ou A values.					
(4) Based on 4-phase model resi	ults for weather	ed gasoline with 0.1	% henzene a typic	al value for da	soline contam	inated sites				
(5) Based on 4-phase model resi							ne are less than	1% of the gasol	ine mixture	2
(6) Based on diesel composition.		ou gaoonnio aosannii	.g Donzona pres	50 III 5011 all C	at otriyi ber	Lond, tolderic d Ayle	are 1000 trial	,5 or the gason	mixtare	
(7) Ecology also issued a fact sh		5-157-TCP) allowing	the use of 2000 m	ng/kg at electri	cal substations	and switchvards V	Vith the adoption	of the rule in 20	01 this fac	t sheet has been withdrawn

	Table 3	3: Soil I	naestio	n Expo	sure Path	way Me	thod B	Calculati	ons for C	Carcinoge	ens		
Risk CalculationsCarcinoge	nic Effects o	of Soil Inge	stion	I A SO				- and and an	0110101				
3						Cancer							
		Risk	Avg. Body	Lifetime	Unit Conv.	Potency	G.I. Abs.	Soil	Duration	Frequency	Method B	ARAR (3)	Risk @
Parameter	CAS No.		Weight		Factor	Factor	Fraction	Ing. Rate	of Exposure	of Contact	Carcinogen		ARAR(4)
		(unitless)	(kg)	(years)	(ug/mg)	(kg-day/mg)	(unitless)	(mg/day)	(years)	(unitless)	(mg/kg)	(mg/kg)	(unitless)
Arsenic (5)	7440-38-2	0.000001	16	75	1,000,000	1.5	1.0	200	6	1	0.67		
Benzene	71-43-2	0.000001	16	75	1,000,000	0.029	1.0	200	6	1	34		
	7440-43-9				, ,								
Cadmium						not available							
T Chromium	7440-47-3												
	16065-83-1					not available							
Chromium III	18540-29-9					not available							
Chromium VI DDT	50-29-3	0.000001	16	75	1,000,000	0.34	1.0	200	6	1	2.9		
Ethylbenzene	100-41-4					not available							
Ethylene dibromide (EDB)	106-93-4	0.000001	16	75	1,000,000	85	1.0	200	6	1	0.012		
Lead	7439-92-1	5.000001		7.0	.,000,000	not available	1.0	200	Ŭ	<u> </u>	0.012		
		0.000004	40	75	4 000 000		4.0	000	0		0.77		
Lindane Methylana ablarida	58-89-9	0.000001	16 16	75 75	1,000,000	1.3	1.0 1.0	200 200	6	1	0.77		
Methylene chloride	75-09-2	0.000001	10	75	1,000,000	0.0075	1.0	200	ь	1	133		
Mercury (inorganic)	7439-97-6					not available							
MTBE	1634-04-4					not available							
Naphthalene	91-20-3					not available							
cPAH Mixtures	na												
Benzo[a]anthracene	56-55-3					not available							
Benzo[b]fluoranthene	205-99-2					not available							
Benzo[k]fluoranthene	207-08-9					not available							
Benzo[a]pyrene	50-32-8	0.000001	16	75	1,000,000	7.3	1.0	200	6	1	0.14		
Chrysene	218-01-9					not available							
Dibenzo[a,h]anthracene	53-70-3					not available							
Ideno[1,2,3-cd]pyrene	207-08-9					not available							
(1) Source of Cancer Potency F	actor is the s	ral clana fa	ctore from [ם ו אים	databasa ay	roopt for Lindon	o which ic f	rom HEAST			-		
(2) Value calculated using equa						loept for Lindan	e willch is t	IOIII MEAST			+		
(3) Applicable, relevant and app			Journphons	uiai equ	autori.			+			+		
(4) ARAR divided by Method B			ed values ir	ndicate AR	AR exceeds I	MTCA requirem	ent that rist	not exceed	1 X 10-5 li e	>101.			
(5) The MTCA 2.0 CLARC table													
	, , , , , ,	. ,					J						
											1		
											1		
	1		1										

Risk CalculationsCarcinoge	nic Effects o	f Soil Inge	stion										
						Cancer							
		Risk	Avg. Body	Lifetime	Unit Conv.	Potency	G.I. Abs.	Soil	Duration	Frequency	Method B	ARAR (3)	Risk @
Parameter	CAS No.		Weight		Factor	Factor	Fraction	Ing. Rate	of Exposure	of Contact	Carcinogen		ARAR(4)
		(unitless)	(kg)	(years)	(ug/mg)	(kg-day/mg)	(unitless)	(mg/day)	(years)	(unitless)	(mg/kg)	(mg/kg)	(unitless)
PCB mixtures	1336-36-3											1.0	
High Risk & Persistence		0.000001	16	75	1,000,000	2.0	1.0	200	6	1	0.5	1.0	2.0
Low Risk & Persistence		0.000001	16	75	1,000,000	0.4	1.0	200	6	1	2.5	1.0	0.40
Lowest Risk & Persistence		0.000001	16	75	1,000,000	0.07	1.0	200	6	1	14	1.0	0.07
Aroclor 1016	12674-11-2					not available							
Arochlor 1248	12672-29-6					not available							
Arochlor 1254	11097-69-1					not available							
Arochlor 1260						not available							
Tetrachloroethylene (PCE)	127-18-4	0.000001	16	75	1,000,000	0.051	1.0	200	6	1	20		
Toluene	108-88-3					not available							
1,1,1 Trichloroethane	71-55-6					not available							
Trichloroethylene	79-01-6	0.000001	16	75	1,000,000	0.011	1.0	200	6	1	91		
Xylenes	1330-20-7					not available							
m-Xylene	108-38-3					not available							
o-xylene	95-47-6					not available							
p-xylene						not available							
(1) Source of Cancer Potency F						cept for tetrach	loroethylen	e, trichloroth	ylene and vin	yl chloride wl	nich are from F	HEAST.	
(2) Value calculated using equa													
(3) Applicable, relevant and app													
(4) ARAR divided by Method B	value in colur	nn K. Bold	ed values ir	dicate AR	AR exceeds I	MTCA requirem	ent that risk	not exceed	1 X 10-5 [i.e.	>10].			

Risk CalculationsNoncard		: Soil Ing									
Nion Calculations Nonean	Jinogeme Ei	10013 01 0011 1	Ingestion								
		Reference	Avg. Body	Unit Conv.	Hazard	Soil	G.I. Abs.	Frequency	Method B	ARAR (3)	HQ @
Parameter	CAS No.	Dose (1)	Weight	Factor		Ing. Rate		of Contact	Noncarc(2)	7 (0)	ARAR (4
		(mg/kg-day)		(ug/mg)			(unitless)	(unitless)	(mg/kg)	(mg/kg)	(unitless)
Arsenic (5)	7440-38-2	0.0003	16	1,000,000	1	200	1.0	1.0	24		
Benzene	71-43-2	0.003	16	1,000,000	1	200	1.0	1.0	240		
Cadmium	7440-43-9	0.001	16	1,000,000	1	200	1.0	1.0	80		
T Chromium	7440-47-3	not available									
	16065-83-1	1.5	16	1,000,000	1	200	1.0	1.0	120,000		
Chromium III	18540-29-9	0.003	16	1,000,000	1	200	1.0	1.0	240		
Shypmium VI	50-29-3	0.0005	16	1,000,000	1	200	1.0	1.0	40		
Ethylbenzene	100-41-4	0.1	16	1,000,000	1	200	1.0	1.0	8,000		
Ethylene dibromide (EDB)	106-93-4	not available									
Lead	7439-92-1	not available									
Lindane	58-89-9	0.0003	16	1,000,000	1	200	1.0	1.0	24		
Methylene chloride	75-09-2	0.06	16	1,000,000	1	200	1.0	1.0	4,800		
Mercury (inorganic)	7439-97-6	0.0003	16	1,000,000	1	200	1.0	1.0	24		
MTBE	1634-04-4	not available									
Naphthalene	91-20-3	0.02	16	1,000,000	1	200	1.0	1.0	1,600		
cPAH Mixtures	na	not available									
Benzo[a]anthracene	56-55-3	not available									
Benzo[b]fluoranthene	205-99-2	not available									
Benzo[k]fluoranthene	207-08-9	not available									
Benzo[a]pyrene		not available									
Chrysene		not available									
Dibenzo[a,h]anthracene		not available									
Ideno[1,2,3-cd]pyrene		not available									
(1) Source of RfDs is EPA's	 RIS datahas	e except for b	enzene which	h is from FP	A's NCFA						
(2) Value calculated using ed											
(3) Applicable, relevant and	appropriate r	equirement.									
(4) ARAR divided by Method										Nie we III	
(5) The MTCA 2.0 CLARC ta	ibles (Feb, 19	996 edition) us	se a Gl abso	rption fraction	n ot U.4. Th	nat numbei	r is no long	er thought to	be valid and 1.0) is used her	e.
			 		<u> </u>						

Risk CalculationsNoncar	cinogenic Ef	fects of Soil I	ngestion								
		Reference	Avg. Body	Unit Conv.	Hazard	Soil	G.I. Abs.	Frequency	Method B	ARAR (3)	HQ @
Parameter	CAS No.	Dose (1)	Weight	Factor	Quotient	Ing. Rate	Fraction	of Contact	Noncarc(2)		ARAR (4)
		(mg/kg-day)	(kg)	(ug/mg)	(unitless)	(mg/day)	(unitless)	(unitless)	(mg/kg)	(mg/kg)	(unitless)
PCB mixtures	1336-36-3	not available								1.0	
High Risk & Persistence		not available									
Low Risk & Persistence		not available									
Lowest Risk & Persistence		not available									
Aroclor 1016	12674-11-2	0.00007	16	1,000,000	1	200	1.0	1.0	5.6	1.0	0.2
Arochlor 1248	12672-29-6	not available									
Arochlor 1254	11097-69-1	0.00002	16	1,000,000	1	200	1.0	1.0	1.6	1.0	0.6
Arochlor 1260		not available									
Tetrachloroethylene (PCE)	127-18-4	0.01	16	1,000,000	1	200	1.0	1.0	800		
Toluene	108-88-3	0.2	16	1,000,000	1	200	1.0	1.0	16,000		
1,1,1 Trichloroethane	71-55-6	0.9	16	1,000,000	1	200	1.0	1.0	72,000		
Trichloroethylene	79-01-6	not available									
Xylenes	1330-20-7	2.0	16	1,000,000	1	200	1.0	1.0	160,000		
m-Xylene	108-38-3	not available									
o-xylene	95-47-6	not available									
p-xylene		not available									
(1) Source of RfDs is EPA's											
(2) Value calculated using ed											
(3) Applicable, relevant and(4) ARAR divided by Method											1

						ations f	or Card	cinoger	s for Soil	Ingestic	on plus	Dermal (Contact	1		
Risk CalculationsCarcino	genic Effects	of Soil Inge	stion + Der	mal Contac	t											
		Risk	Ava. Body	Averaging	Exposure	Exposure	Soil	G.I. Abs.	Oral	Unit Conv.	Surface	Adherence	Dermal	G.I. Abs. Conv.	Dermal	Method B (3)
Parameter	CAS No.		Weight	Time	Frequency	Duration	Ing. Rate		CPF (1)	Factor	Area	Factor	Abs. Fraction	Factor	CPF (2)	Carcinogen
		(unitless)	(kg)	(days)	(days/yr)	(yrs)		(unitless)		(ug/mg)	(cm²)	(mg/cm ² -day)	(unitless)	(unitless)	(kg-day/mg)	(mg/kg)
Arsenic	7440-38-2	0.000001	16	27,375	365	6	200	1.0	1.5	1,000,000	2,200	0.2	0.03	0.95	1.6	0.62
Benzene	71-43-2	0.000001	16	27,375	365	6	200	1.0	0.029	1,000,000	2,200	0.2	0.0005	0.80	0.036	34
Cadmium	7440-43-9								not available							
	7440-47-3								not available							
T Chromium	16065-83-1								not available							
Chromium III	18540-29-9								not available							
Chromium VI DDT	50-29-3	0.000001	16	27 275	265	6	200	1.0	0.34	1 000 000	2 200	0.2	0.02	0.70	0.49	2.7
Ethylbenzene	100-41-4	0.000001	16	27,375	365	6	200	1.0	not available	1,000,000	2,200	0.2	0.03	0.70	0.49	2.7
,																
Ethylene dibromide (EDB)	106-93-4	0.000001	16	27,375	365	6	200	1.0	85	1,000,000	2,200	0.2	0.03	0.80	106	0.011
Lead	7439-92-1								not available							
Lindane	58-89-9	0.000001	16	27,375	365	6	200	1.0	1.3	1,000,000	2,200	0.2	0.04	0.50	2.6	0.65
Methylene chloride	75-09-2	0.000001	16	27,375	365	6	200	1.0	0.0075	1,000,000	2,200	0.2	0.0005	0.80	0.0094	133
Mercury (inorganic)	7439-97-6								not available							
MTBE	1634-04-4								not available							
Naphthalene	91-20-3								not available							
cPAH Mixtures	na															
Benzo[a]anthracene	56-55-3								not available							
Benzo[b]fluoranthene	205-99-2								not available							
Benzo[k]fluoranthene	207-08-9								not available							
Benzo[a]pyrene	50-32-8	0.000001	16	27,375	365	6	200	1.0	7.3	1,000,000	2,200	0.2	0.13	0.89	8.2	0.10
Chrysene Dibenzo[a,h]anthracene	218-01-9 53-70-3								not available not available							
Ideno[1,2,3-cd]pyrene	207-08-9								not available							
140110[1,2,0 04]py10110	20. 00 0								not available							
(1) Source of Cancer Potent																
(2) Dermal CPF = Oral CPF(3) Calculated using equation				factor is che	emical speci	fic. See eq	uation 740	-5 for defai	ults and 1/25/9	9 memo for	chemical	specific factors	s used here.			
(3) Calculated using equation	n 740-5 and d	erauit assump	otions.													
						-			1							

Risk CalculationsCarcino	genic Effects	of Soil Inge	estion + Deri	mal Contac	:t											
	Ĭ															+
		Risk	Avg. Body	Averaging	Exposure	Exposure	Soil	G.I. Abs.	Oral	Unit Conv.	Surface	Adherence	Dermal	G.I. Abs. Conv.	Dermal	Method B (3)
Parameter	CAS No.		Weight	Time	Frequency	Duration	Ing. Rate	Fraction	CPF (1)	Factor	Area	Factor	Abs. Fraction	Factor	CPF (2)	Carcinogen
		(unitless)	(kg)	(days)	(days/yr)	(yrs)	(mg/day)	(unitless)	(kg-day/mg)	(ug/mg)	(cm²)	(mg/cm ² -day)	(unitless)	(unitless)	(kg-day/mg)	(mg/kg)
PCB mixtures	1336-36-3															
High Risk & Persistence		0.000001	16	27,375	365	6	200	1.0	2.0	1,000,000	2,200	0.2	0.14	0.81	2.5	0.36
Low Risk & Persistence		0.000001	16	27,375	365	6	200	1.0	0.4	1,000,000	2,200	0.2	0.14	0.81	0.49	1.8
Lowest Risk & Persistence		0.000001	16	27,375	365	6	200	1.0	0.07	1,000,000	2,200	0.2	0.14	0.81	0.0864	10
Aroclor 1016	12674-11-2								not available							
Arochlor 1248	12672-29-6								not available							
Arochlor 1254	11097-69-1								not available							
Arochlor 1260									not available							
Tetrachloroethylene (PCE)	127-18-4	0.000001	16	27,375	365	6	200	1.0	0.051	1,000,000	2,200	0.2	0.03	0.80	0.064	18
Toluene	108-88-3								not available							
1,1,1 Trichloroethane	71-55-6								not available							
Trichloroethylene	79-01-6	0.000001	16	27,375	365	6	200	1.0	0.011	1,000,000	2,200	0.2	0.03	0.80	0.014	84
Xylenes	1330-20-7								not available							
m-Xylene	108-38-3								not available							
o-xylene	95-47-6								not available							
p-xylene									not available							
(1) Source of Cancer Potenc	y Factor is the	oral slope fa	actors from F	PΔ'e IRIS d	atahasa ay	cent for tetr	achloroeth	vlene trich	lorothylene an	d vinyl chlor	ide which	are from HFA	ST			-

		Т	able 6: M	lethod B	Calculati	ions for	Noncarcino	gens for	Soil Ing	estion pl	us Derm	al Contact				
Risk CalculationsNoncarc	inogenic Effects							90110 101	oon mg	oction pi	uo 201111	ui Goillage				
D	040 No	Hazard	Avg. Body	Averaging	Exposure	Exposure	Oral Ref.	Soil	G.I. Abs.	Unit Conv.	G.I. Conv.	Dermal	Surface		Dermal Abs.	Method B
Parameter	CAS No.	Index (unitless)	Weight (kg)	Time (days)	Frequency (days/yr)	Duration (years)	Dose (1) (mg/kg-day)	Ing. Rate (mg/day)	Fraction (unitless)	Factor (mg/kg)	Factor (unitless)	Rfd (2) (mg/kg-day)	Area (cm2)	Factor (mg/cm2)	Fraction (unitless)	Noncarc(2) (mg/kg)
Arsenic	7440-38-2	1	16	2,190	365	6	0.0003	200	1	1,000,000	0.95	0.00029	2,200	0.2	0.03	22
Benzene	71-43-2	1	16	2,190	365	6	0.003	200	1	1,000,000	0.80	0.0024	2,200	0.2	0.0005	
Cadmium	7440-43-9	1	16	2,190	365	6	0.001	200	1	1,000,000	0.025	0.000025	2,200	0.2	0.001	74
T Chromium	7440-47-3						not available									
	16065-83-1	1	16	2,190	365	6	1.5	200	1	1,000,000	0.013	0.020	2,200	0.2	0.01	44,571
Chromium III	18540-29-9	1	16	2,190	365	6	0.003	200	1	1,000,000	0.025	0.000075	2,200	0.2	0.01	128
Chromium VI																
DDT	50-29-3	1	16	2,190	365	6	0.0005	200	1	1,000,000	0.70	0.00035	2,200	0.2	0.03	37
Ethylbenzene	100-41-4	1	16	2,190	365	6	0.1	200	1	1,000,000	0.80	0.080	2,200	0.2	0.03	7,390
Ethylene dibromide (EDB)	106-93-4						not available									
Lead	7439-92-1						not available									
Lindane	58-89-9	1	16	2,190	365	6	0.0003	200	1	1,000,000	0.50	0.00015	2,200	0.2	0.04	20
Methylene chloride	75-09-2	1	16	2,190	365	6	0.06	200	1	1,000,000	0.80	0.048	2,200	0.2	0.0005	4,793
Mercury (inorganic)	7439-97-6	1	16	2,190	365	6	0.0003	200	1	1,000,000	0.07	0.000021	2,200	0.2	0.01	18
MTBE	1634-04-4						not available									
Naphthalene	91-20-3	1	16	2,190	365	6	0.02	200	1	1,000,000	0.89	0.018	2,200	0.2	0.13	1,211
cPAH Mixtures	na						not available									
Benzo[a]anthracene	56-55-3						not available									
Benzo[b]fluoranthene	205-99-2						not available									
Benzo[k]fluoranthene	207-08-9						not available									
Benzo[a]pyrene	50-32-8						not available									
Chrysene	218-01-9						not available									
Dibenzo[a,h]anthracene	53-70-3						not available									
Ideno[1,2,3-cd]pyrene	207-08-9						not available									
(1) Source of oral RfDs is EP.(2) Dermal RfD = Oral RfD X						See equation	740-4 for default	s and 1/25/9	9 memo for	chemical spe	cific factors u	ised here.				
(3) Calculated using equation																

sk CalculationsNoncarcin	ogenic Effects	T s of Soil In	gestion + De	rmal Contact												
on Guiodianono Mondaroni	Ogerno Encore	, o. oon	gestion i De	linai Gomao.												
		Hazard	Avg. Body	Averaging	Exposure	Exposure	Oral Ref.	Soil	G.I. Abs.	Unit Conv.	G.I. Conv.	Dermal	Surface	Adherence	Dermal Abs.	Method E
Parameter	CAS No.	Index	Weight	Time	Frequency	Duration	Dose (1)	Ing. Rate	Fraction	Factor	Factor	Rfd (2)	Area	Factor	Fraction	Noncarc(2
		(unitless)	(kg)	(days)	(unitless)	(years)	(mg/kg-day)	(mg/day)	(unitless)	(mg/kg)	(unitless)	(mg/kg-day)	(mg/cm2)	(mg/cm2)	(unitless)	(mg/kg)
			` •							, , , , ,						
PCB mixtures	1336-36-3						not available									
High Risk & Persistence							not available									
Low Risk & Persistence							not available									
Lowest Risk & Persistence							not available									
Aroclor 1016	12674-11-2	1	16	2,190	365	6	0.00007	200	1	1,000,000	0.81	0.000057	2,200	0.2	0.14	4.
Arochlor 1248	12672-29-6						not available									
Arochlor 1254	11097-69-1	1	16	2,190	365	6	0.00002	200	1	1,000,000	0.81	0.000016	2,200	0.2	0.14	1.
Arochlor 1260							not available									
Tetrachloroethylene (PCE)	127-18-4	1	16	2,190	365	6	0.01	200	1	1,000,000	0.80	0.0080	2,200	0.2	0.03	73
Toluene	108-88-3	1	16	2,190	365	6	0.2	200	1	1,000,000	0.80	0.16	2,200	0.2	0.03	14,78
1,1,1 Trichloroethane	71-55-6	1	16	2,190	365	6	0.9	200	1	1,000,000	0.80	0.72	2,200	0.2	0.0005	71,90
Trichloroethylene	79-01-6						not available									
	1000 00 7		10	0.400	005			000	_	4 000 000	0.00		0.000	2.2	0.00	447.00
Xylenes	1330-20-7	1	16	2,190	365	6	2.0	200	1	1,000,000	0.80	1.6	2,200	0.2	0.03	147,80
m-Xylene	108-38-3						not available									
o-xylene	95-47-6						not available									
p-xylene							not available									
													-			
Source of oral RfDs is EPA's	IDIC deteboor	n avaant fa	r bonzono wbi	ob io from ED	IA'S NCEA								-			
Dermal RfD = Oral RfD X G						otion 740.4										
Calculated using equation 7				nemical spec	ilic. See equ	140-4.										
Calculated using equation 7	40-4 and delad	iii assumpii	UIIS.													

			Ta	blo 7: 3-	Dhaca M	odel Assu	mntions ar	d Posults				
			10	ible 7. 3-	riiase ivi	ouel Assul	ilipuolis ai	iu Resuits				
3-Phase Model Results												
		Gd H₂O								Dilution	Soil	
	CAS No.	C/U Level	Bulk Density	Soil Water	Soil Air	H'	Koc	foc	Kd	Factor	C/U Level	
		(mg/l) (1)	(g/cc) (2)	(cc/cc) (2)	(cc/cc) (2)	(cc/cc) (3)	(ml/g) (3)	(%) (4)	(cc/g) (5)	(dimensionless)	(mg/kg) (6)	
Arsenic	7440-38-2	0.005	1.5	0.3	0.13	0	-	- (//(-/	29	20	2.92	
Benzene	71-43-2	0.005	1.5	0.3	0.13	0.23	61.7	0.1%	0.062	20	0.028	
Cadmium	7440-43-9	0.005	1.5	0.3	0.13	0	-	-	6.7	20	0.69	
Chromium (total)	7440-47-3	0.05	4.5	0.0	0.40				40		- 40	
Chromium VI	18540-29-9	0.05	1.5	0.3	0.13	0	-	-	19	20	19	
	16065-83-1	0.10	1.5	0.3	0.13	0	-	-	1000	20	2000	
Shramium III	50-29-3	0.0003	1.5	0.3	0.13	0.000332	677,934	0.1%	678	20	4.07	
Ethyl Benzene	100-41-4	0.7	1.5	0.3	0.13	0.323	204	0.1%	0.204	20	6.05	
Ethylene dibromide (EDB)	106-93-4	0.00001	1.5	0.3	0.13	0.0336	66	0.1%	0.066	20	0.000054	
Lead	7439-92-1	0.02	1.5	0.3	0.13	0	-	-	10000	20	3000	
								0.407				
Lindane Mathylana Chlarida	58-89-9	0.0002	1.5	0.3	0.13	0.000574	1,352	0.1%	1.4	20	0.0062	
Methylene Chloride	75-09-2	0.005	1.5	0.3	0.13	0.0898	10	0.1%	0.010	20	0.022	
Mercury (inorganic)	7439-97-6	0.002	1.5	0.3	0.13	0.467	-	-	52	20	2.09	
MTBE	1634-04-4	0.02	1.5	0.3	0.13	0.018	11	0.1%	0.011	20	0.085	
Naphthalene	91-20-3	0.16	1.5	0.3	0.13	0.0198	1,191	0.1%	1.191	20	4.46	
cPAH Mixtures	na									+		
Benzo[a]anthracene	56-55-3	0.000012	1.5	0.3	0.13	0.000137	357,537	0.1%	358	20	0.086	
Benzo[b]fluoranthene	205-99-2	0.000012	1.5	0.3	0.13	0.00455	1,230,000	0.1%	0	20	0.00	
Benzo[k]fluoranthene	207-08-9	0.000012	1.5	0.3	0.13	0.000034	1,230,000	0.1%	0	20	0.00	
Benzo[a]pyrene	50-32-8	0.000012	1.5	0.3	0.13	0.0000463	968,774	0.1%	0	20	0.00	
Chrysene	218-01-9	0.000012	1.5	0.3	0.13	0.00388	398,000	0.1%	0	20	0.00	
Dibenzo[a,h]anthracene	53-70-3	0.000012	1.5	0.3	0.13	6.03E-07	1,789,101	0.1%	0	20	0.00	
Indeno[1,2,3-cd]pyrene	207-08-9	0.000012	1.5	0.3	0.13	0.0000656	3,470,000	0.1%	0.00	20	0.00	
											1	
						T						
						1						
						1					1	
						1						
						1						
	+									++	+	
						1					1	
						1					1	

			Та	ble 7: 3-	Phase M	odel Assu	mptions ar	nd Results				
3-Phase Model Results												
		Ground Water								Dilution	Soil	
Chemical Name	CAS No.	C/U Level	Bulk Density	Soil Water	Soil Air	H'	Koc	foc	Kd	Factor	C/U Level	
		(mg/l) (1)	(g/cc) (2)	(cc/cc) (2)	(cc/cc) (2)	(cc/cc) (3)	(ml/g) (3)	(%) (4)	(cc/g) (5)	(dimensionless)	(mg/kg) (6)	
PCB Mixtures	1336-36-3											
	12674-11-2	0.0001	1.5	0.3	0.13	0.119	107,285	0.1%	107	20	0.21	
Arochlor 1016		0.0001	1.5	0.3	0.13	0.189	822,422	0.1%	822	20	1.65	
Arochlor 1260 Tetrachlor 0ethylene (PCE)	127-18-4	0.005	1.5	0.3	0.13	0.754	265	0.1%	0.265	20	0.053	
Toluene	108-88-3	1.0	1.5	0.3	0.13	0.272	140	0.1%	0.140	20	7.27	
1,1,1 Trichloroethane	71-55-6	0.2	1.5	0.3	0.13	0.705	135	0.1%	0.135	20	1.58	
Trichloroethylene	79-01-6		1.5	0.3	0.13	0.422	94	0.1%	0.133	20	0.033	
<u> </u>												
Xylenes m-xylene	1330-20-7 108-38-3	1.0 1.0	1.5 1.5	0.3	0.13 0.13	0.279 0.301	233 196	0.1% 0.1%	0.233 0.000	20	9.14 4.52	
m-xylene o-xylene	95-47-6		1.5	0.3	0.13	0.301	241	0.1%	0.000	20	4.52	
p-xylene	30-47-0	1.0	1.5	0.3	0.13	0.213	311	0.1%	0.000	20	4.54	
p xylorio		1.0	1.0	0.0	0.10	0.014	311	0.170	0.000	20	4.04	
(1) Ground water cleanup le									for B(a)P.			
If the Method A ground v	water cleanu	o level for B(a)P	of 0.1 ug/l is use	ed, the soil o	leanup level	becomes 1.94	mg/kg for B(a)P					
(2) From equation 747-1. Ba												
(3) Source: Soil Screening G				EPA/540/R	-95/12B. Ma	ау, 1996. Ехсер	tions are:					
EDB values from ATSDF												
MTBE from USGS final of												
Arochlor values for Henr												
Values for total xylenes						ition data from I	PH Criterial Wo	orking GroupVolu	me 2 (May 1998)).		
That is: m = 51% of tota H' for all metals except						nco						
(4) Based on review of data						ance.						
(5) From equation 747-2 for					from the liter	ature and WA S	State sites					
(6) Calculated using equation								l shown in this table	e.			
(-,				(3.5 5.1.5.1.1.								
											1	

			Та	ble 7: 3	Phase M	odel Assu	mptions an	nd Results				
3-Phase Model Results			- 10		. 11430 141		paono an	- TOOUIG				
3-Phase Model Results		Pore Water		NAPL		Pore Water		Vapor		Soil		Sum
	CAS No.	Concentration	Solubility	in	Csat	Concentration		Concentration	Vapor Mass	Concentration	Soil Mass	Mass
	CAS NO.						VVAICA IVICISS					
		(mg/l) (7)	(mg/l) (3)	Soil? (8)	(mg/kg) (9)	(mg/l) (7)	(mg/kg) (10)	(mg/m ³) (11)	(mg/kg) (12)	(mg/kg) (13)	(mg/kg) (14)	(mg/kg) (15)
Arsenic	7440-38-2	-	-	n/a	-	0.10	0.020	-	-	2.90	2.90	2.92
Benzene	71-43-2	0.10	1,750	No	493	0.10	0.020	22.8	0.0020	0.0062	0.0062	0.028
Cadmium	7440-43-9	0.10	-	n/a	-	0.10	0.020	-	1	0.67	0.67	0.69
Chromium (total)	7440-43-9	0.10	-	II/a	-	0.10	0.020	-	-	0.67	0.07	0.09
Chromium (total)	18540-29-9	1.0	_	n/a	-	1.0	0.20	-	-	19	19	19
0	16065-83-1	2.0		n/a	-	2.0	0.40	-	-	2000	2,000	2000
Chromium VI Chromium III DD I		2.0	-	II/a		2.0	0.40	-	-	2000	·	
DDT	50-29-3	0.0060	0.0250	No	17	0.0060	0.0012	0.0020	1.73E-07	4.07	4.07	4.07
Ethyl Benzene	100-41-4	14	169	No	73	14	2.8	4522	0.39	2.86	2.86	6.05
Ethylene dibromide (EDB)	106-93-4	0.00020	4,000	No	1,076	0.00020	0.000040	0.0067	5.82E-07	0.000013	0.000013	0.000054
Lead	7439-92-1	0.30	4,000	n/a	-	0.30	0.060	-	5.62L-07	3000	3000	3000
Lindane	58-89-9	0.0040	6.8	No	11	0.0040	0.00080	0.0023	1.99E-07	0.0054	0.0054	0.006
Methylene Chloride	75-09-2	0.10	13,000	No	2,831	0.10	0.020	9.0	0.00078	0.0010	0.0010	0.022
Mercury (inorganic)	7439-97-6	0.040	-	n/a	-	0.040	0.008	19	0.0016	2.08	2.08	2.09
MTBE	1634-04-4	0.40	50,000	No	10,628	0.40	0.080	7.2	0.00062	0.0044	0.0044	0.085
Naphthalene	91-20-3	3.2	31	No	43	3.2	0.64	63	0.0055	3.81	3.81	4.46
cPAH Mixtures	na											
Benzo[a]anthracene	56-55-3	0.00024	0.0094	No	3.4	0.00024	0.000048	3.29E-05	2.85E-09	0.09	0.086	0.09
Benzo[b]fluoranthene	205-99-2	0.00024	0.0015	No	0.0	0.00024	0.000048	1.09E-03	9.46E-08	0.00	0.00	0.00
Benzo[k]fluoranthene	207-08-9	0.00024	0.0008	No	0.0	0.00024	0.000048	8.16E-06	7.07E-10	0.00	0.00	0.00
Benzo[a]pyrene	50-32-8	0.00024	0.00162	No	0.0	0.00024	0.000048	1.11E-05	9.63E-10	0.00	0.00	0.00
Chrysene	218-01-9	0.00024	0.0016	No	0.00	0.00024	0.000048	9.31E-04	8.07E-08	0.00	0.000	0.00
Dibenzo[a,h]anthracene	53-70-3	0.00024	0.00249	No	0.0	0.00024	0.000048	1.45E-07	1.25E-11	0.00	0.00	0.00
Indeno[1,2,3-cd]pyrene	207-08-9	0.00024	0.000022	Yes	0.000	0.00024	0.000048	1.57E-05	1.36E-09	0.00	0.00	0.00
	+							+				+
												+
	1							+		 		+
	1							+		 		+
	1							+				+
								+				
	1							+				+
	1							+				+
	1							+				+
	1							+				+
						1						

			Та	ble 7: 3	Phase M	odel Assur	nptions an	d Results				
3-Phase Model Results												
		Pore Water		NAPL		Pore Water		Vapor		Soil		Sum
	CAS No.	Concentration	Solubility	in	Csat	Concentration	Water Mass	Concentration	Vapor Mass	Concentration	Soil Mass	Mass
		(mg/l) (7)	(mg/l) (3)	Soil? (8)	(mg/kg) (9)	(mg/l) (7)	(mg/kg) (10)	(mg/m ³) (11)	(mg/kg) (12)	(mg/kg) (13)	(mg/kg) (14)	(mg/kg) (15)
PCB Mixtures	1336-36-3											
	12674-11-2	0.0020	0.42	No	45	0.0020	0.00040	0.24	2.06E-05	0.21	0.21	0.21
Arochlor 1016		0.0020	0.08	No	66	0.0020	0.00040	0.38	3.28E-05	1.64	1.64	1.65
Tetrachior 1260 Tetrachior 6ethylene (PCE)	127-18-4	0.10	200	No	106	0.10	0.020	75	0.0065	0.0265	0.0265	0.053
Toluene	108-88-3	20	526	No	191	20	4.0	5440	0.47	2.80	2.80	7.3
1,1,1 Trichloroethane	71-55-6	4.0	1,330	No	527	4.0	0.80	2820	0.24	0.54	0.54	1.58
Trichloroethylene	79-01-6	0.10	1,100	No	364	0.10	0.020	42	0.0037	0.0094	0.0094	0.033
Xylenes	1330-20-7	20	171	No	78	20	4.0	5580	0.48	4.66	4.66	9.1
m-xylene	108-38-3	20	161	No	36	20	4.0	6020	0.52	0.00	0.00	4.5
o-xylene	95-47-6	20	178	No	39	20	4.0	4260	0.37	0.00	0.00	4.4
p-xylene		20	185	No	42	20	4.0	6280	0.54	0.00	0.00	4.5
(7) Pore water concentration	n = ground wa	ater cleanup leve	I X dilution fact	or								
(8) There is NAPL in the soi	I if the pore w	ater concentration	on exceeds the	solubility lin	nit.							
(9) C sat is the soil concentr	ation above v	which there is NA	PL in the soil.	It is calculat	ed by substitu	iting the solubilit	y limit for the [g	round water clean	up level X DF] in e	quation 747-1.		
(10) Water mass = [Pore wa	ater concentra	ation X soil water	fraction] / soil l	oulk density.	. This is the r	nass of contami	nant in the water	r phase.	-			
(11) Vapor concentration =	Pore water co	oncentration X He	enry's Constant	X 1000.								
(12) Vapor mass = [Vapor c	oncentration	X soil air fraction] / soil bulk den	sity. This is	the mass of	contaminant in t	he vapor phase					
(13) Soil concentration = Po												
(14) Soil mass = [Pore wate							ninant in the so	l phase.				
(15) Sum mass = water mas	ss + vapor ma	ass + soil mass.	This value equ	als the soil o	cleanup level.	1						
						1						1

0.430 Unitless

in Solid: 46.11%

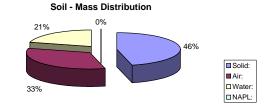

in NAPL: NONE

Table 8: 4-Phase Model Results using Fresh ARCO Gasoline

Total soil porosity: default is 0.43

| Solid: 46.1% | Air: 33.0% | Water: 20.9% | NAPL: NONE |

	Equilibrium	Protective	Predicted G.W.
	Composition	Soil	
	%	ppm	ug/l
<u>Aliphatics</u>	ARCO 1		
EC >5-6	29.93%	0.27	3.49
EC >6-8	15.31%	0.14	1
EC >8-10	3.77%	0.03	0.0
EC >10-12	2.56%	0.02	0.00
EC >12-16		0.00	0.00
EC >16-21		0.00	0.00
<u>Aromatics</u>		0.00	
Benzene	3.67%	0.033	5.86
Toluene	14.62%	0.13	18
Ethylbenzene	2.73%	0.02	3
Xylenes	13.45%	0.12	13
EC >8-10	4.15%	0.04	1
EC >10-12	7.47%	0.07	1
EC >12-16	0.0191	0.02	0
EC >16-21		0.00	0
EC >21-35		0.00	0
Naphthalene	0.43%	0.00	0
MTBE		0.00	0
Total	100.00%	0.90	47

Volumetric water content: default is 0.3 Initial volumetric air content: default is 0.13	Qw Qa	0.300 0.130	Unitless Unitless
Soil bulk density measured: default is 1.5	rb	1.500	kg/l
*or, use soil bulk density computed @solid density=2.65kg/l: Fraction Organic Carbon: default is 0.001	foc	1.811 0.0010	kg/l Unitless
Dilution Factor: default is 20	DF	20.0	Unitless
Soil Concentration:	0.90		
Predicted Ground Water TPH (ug/l:	47	_	
HI @ Predicted G.W. Concentration:	0.27		
Volumetric NAPL Content, QNAPL :	NAPL phase is no	ot existing!	
NAPL Saturation (%), QNAPL/n:	N/A		
Type of model used for computation:	3-Phase Model		

Total Mass distributed in Water Phase: 20.89%

Total Mass distributed in Air Phase: 33.00%

Yes!

Soil Concentration = 0.90

Gasoline composition from 9/3/98 neat product analysis conducted by Northcreek Analytical, Inc under contract to Ecology.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted concentration of benzene (5.86 ug/l) in the ground water.

Computation completed?

TPH Distribution @ 4-phase in soil pore system:

page (1)

Table 9: 4-Phase Model Results using ARCO #5 (ARCO composition closest to 0.1% benzene)

Solid: 77.2% Air: 11.8% Water: 11.1% NAPL: NONE

100.0%

12%

Soil - Mass Distribution

	Equilibrium	Protective	Predicted G.W.
	Composition	Soil	
	%	ppm	ug/l
<u>Aliphatics</u>	ARCO 5		
EC >5-6	1.36%	0.38	4.93
EC >6-8	13.4%	3.74	22
EC >8-10	12.8%	3.59	4.6
EC >10-12	10.8%	3.02	0.58
EC >12-16		0.00	0.00
EC >16-21		0.00	0.00
<u>Aromatics</u>		0.00	
Benzene	0.066%	0.019	3.29
Toluene	2.8%	0.80	109
Ethylbenzene	1.8%	0.51	59
Xylenes	10.0%	2.81	308
EC >8-10	11.6%	3.26	89
EC >10-12	26.3%	7.35	135
EC >12-16	7.7%	2.16	21
EC >16-21		0.00	0
EC >21-35		0.00	0
Naphthalene	1.27%	0.35	17
MTBE		0.00	0
Total	100.00%	28.00	774

۷.				
	Total soil porosity: default is 0.43	n	0.430	Unitless
	Volumetric water content: default is 0.3	Qw	0.300	Unitless
	Initial volumetric air content: default is 0.13	Qa	0.130	Unitless
	Soil bulk density measured: default is 1.5	rb	1.500	kg/l
	*or, use soil bulk density computed @solid density=2.65kg/l:		1.811	kg/l
	Fraction Organic Carbon: default is 0.001	foc	0.0010	Unitless
	Dilution Factor: default is 20	DF	20.0	Unitless
	Soil Concentration:	28.00		
	Predicted Ground Water TPH (ug/l:	774		
	HI @ Predicted G.W. Concentration:	1.01		
	Volumetric NAPL Content, QNAPL :	NAPL phase is no	t existing!	
	NAPL Saturation (%), QNAPL/n:	N/A	_	
	Type of model used for computation:	3-Phase Model		
	Computation completed?	Yes!		
	TPH Distribution @ 4-phase in soil pore system:			
	Total Mass distributed in Water Phase	: 11.05%	in Solid	: 77.18%
	Total Mass distributed in Air Phase	: 11.76%	in NAPL:	: NONE

■ Solid:

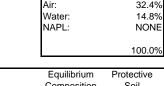
■ Air:

□ Water: □ NAPL:

Soil Concentration = 28.00

Gasoline composition is fresh product weathered to approximately 0.1% benzene, simulated by removal of mass in dissolved and vapor phases by successive model runs. This benzene composition is typical of soil benzene concentrations found in soils at gasoline contaminated sites in WA State.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted hazard index of the gasoline mixture in the ground water.


page (2)

0.430 Unitless 0.300 Unitless 0.130 Unitless 1.500 kg/l 1.811 kg/l 0.0010 Unitless 20.0 Unitless

Table 10: 4-Phase Model Results using Fresh ARCO Gasoline

Soil - Mass Distribution

	Equilibrium	Protective	Predicted G.W.
	Composition	Soil	
	%	ppm	ug/l
<u>Aliphatics</u>	Fresh BP		
EC >5-6	28.48%	0.28	3.69
EC >6-8	17.2%	0.17	1
EC >8-10	4.6%	0.05	0.1
EC >10-12	5.5%	0.06	0.01
EC >12-16		0.00	0.00
EC >16-21		0.00	0.00
<u>Aromatics</u>		0.00	
Benzene	2.9%	0.029	5.16
Toluene	7.7%	0.08	11
Ethylbenzene	1.7%	0.02	2
Xylenes	8.9%	0.09	10
EC >8-10	5.5%	0.06	2
EC >10-12	9.2%	0.09	2
EC >12-16	6.6%	0.07	1
EC >16-21	0.0%	0.00	0
EC >21-35	0.0%	0.00	0
Naphthalene	1.6%	0.02	1
MTBE	0.0%	0.00	0
Total	100.0%	1.00	37

15%0%	
	■ Solid:
	■ Air:
520/	■ Water:
32%	□NAPL:

Total soil porosity: default is 0.43	n
Volumetric water content: default is 0.3	Qw
Initial volumetric air content: default is 0.13	Qa
Soil bulk density measured: default is 1.5	rb
*or, use soil bulk density computed @solid density=2.65kg/l:	
Fraction Organic Carbon: default is 0.001	foc
Dilution Factor: default is 20	DF
Soil Concentration:	1.00
Predicted Ground Water TPH (ug/l:	37
LI @ Dradiated C.W. Concentration:	0.24
HI @ Predicted G.W. Concentration:	0.24

Volumetric NAPL Content, QNAPL: NAPL phase is not existing! NAPL Saturation (%), QNAPL/n: N/A Type of model used for computation: 3-Phase Model Computation completed? Yes! TPH Distribution @ 4-phase in soil pore system:

Total Mass distributed in Water Phase: 14.75% in Solid: 52.87%

Total Mass distributed in Air Phase: 32.38% in NAPL: NONE

Soil Concentration = 1.00

Gasoline composition from 9/3/98 neat product analysis conducted by Northcreek Analytical, Inc under contract to Ecology. This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted concentration of benzene (5.16 ug/l) in the ground water.

page (3)

Table 11: 4-Phase Model Results using ARCO #4 (ARCO Composition closest to 0.1% benzene)

Soil - Mass Distribution

Solid:	78.7%
Air:	12.4%
Water:	8.9%
NAPL:	NONE
	100.0%

	Equilibrium	Protective	Predicted G.W.
	Composition	Soil	
	%	ppm	ug/l
Aliphatics Aliphatics	BP #4		
EC >5-6	2.640%	0.58	7.53
EC >6-8	14.131%	3.11	18
EC >8-10	9.935%	2.19	2.8
EC >10-12	13.808%	3.04	0.58
EC >12-16		0.00	0.00
EC >16-21		0.00	0.00
<u>Aromatics</u>			
Benzene	0.127%	0.028	4.95
Toluene	2.003%	0.44	61
Ethylbenzene	1.135%	0.25	29
Xylenes	6.427%	1.41	155
EC >8-10	10.248%	2.25	62
EC >10-12	20.242%	4.45	82
EC >12-16	16.106%	3.54	34
EC >16-21	0.000%	0.00	0
EC >21-35	0.000%	0.00	0
Naphthalene	3.198%	0.70	34
MTBE	0.000%	0.00	0
			0
Total	100.000%	22.00	490

Total soil porosity: default is 0.43	n	0.430	Unitless
Volumetric water content: default is 0.3	Qw	0.300	Unitless
Initial volumetric air content: default is 0.13	Qa	0.130	Unitless
Soil bulk density measured: default is 1.5	rb	1.500	kg/l
*or, use soil bulk density computed @solid density=2.65kg/l:		1.811	kg/l
Fraction Organic Carbon: default is 0.001	foc	0.0010	Unitless
Dilution Factor: default is 20	DF	20.0	Unitless
Soil Concentration:	22.00		
Predicted Ground Water TPH (ug/l:	490		
HI @ Predicted G.W. Concentration:	0.92		
Volumetric NAPL Content, QNAPL :	NAPL phase is no	ot existing!	
Volumetric NAPL Content, QNAPL : NAPL Saturation (%), QNAPL/n:	NAPL phase is no N/A	ot existing!	
· ·	•	ot existing!	
NAPL Saturation (%), QNAPL/n:	N/A	ot existing!	
NAPL Saturation (%), QNAPL/n: Type of model used for computation: Computation completed? TPH Distribution @ 4-phase in soil pore system:	N/A 3-Phase Model Yes!	ot existing!	
NAPL Saturation (%), QNAPL/n: Type of model used for computation: Computation completed?	N/A 3-Phase Model Yes!	J	: 78.72%
NAPL Saturation (%), QNAPL/n: Type of model used for computation: Computation completed? TPH Distribution @ 4-phase in soil pore system:	N/A 3-Phase Model Yes! e: 8.90%	J	: 78.72%

Soil Concentration = 22.00

Gasoline composition is fresh product weathered to approximately 0.1% benzene, simulated by removal of mass in dissolved and vapor phases by successive model runs. This benzene composition is typical of soil benzene concentrations found in soils at gasoline contaminated sites in WA State.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted concentration of benzene (4.95 ug/l) in the ground water.

page (4)

in NAPL: 72.37%

Table 12: 4-Phase Model Results for BP #24 (least weathered composition with HI<1 at 100 PPM in the Soil)

Soil - Mass Distribution

Solid:	25.5%
Air:	0.6%
Water:	1.5%
NAPL:	72.4%
	100.0%

Solid:	1
■ Air:	l
□ Water:	l
□NAPL:	l

	Equilibrium	Protective	Predicted G.W.
	Composition	Soil	
	%	ppm	ug/l
<u>Aliphatics</u>	BP #24		
EC >5-6	0.0000%	0.00	0.0
EC >6-8	0.0601%	0.06	0.2
EC >8-10	10.4590%	10.98	2.8
EC >10-12	31.3676%	32.94	0.6
EC >12-16	0.0000%	0.00	0.0
EC >16-21	0.0000%	0.00	0.0
<u>Aromatics</u>		0.00	
Benzene	0.0000%	0.000	0.0
Toluene	0.0000%	0.00	0.0
Ethylbenzene	0.0012%	0.00	0.1
Xylenes	0.0098%	0.01	0.7
EC >8-10	3.7452%	3.93	70.8
EC >10-12	21.2490%	22.31	205.9
EC >12-16	31.2770%	32.84	88.2
EC >16-21	0.0000%	0.00	0.0
EC >21-35	0.0000%	0.00	0.0
Naphthalene	1.8311%	1.92	30.1
MTBE	0.0000%	0.00	0.0
Total	100.0000%	105.00	399.3

Total soil porosity: default is 0.43	n	0.430	Unitless
Volumetric water content: default is 0.3	Qw	0.300	Unitless
Initial volumetric air content: default is 0.13	Qa	0.130	Unitless
Soil bulk density measured: default is 1.5	rb	1.500	kg/l
*or, use soil bulk density computed @solid density=2.65kg/l:		1.811	kg/l
Fraction Organic Carbon: default is 0.001	foc	0.0010	Unitless
Dilution Factor: default is 20	DF	20.0	Unitless
Bildion Factor, acidal is 20	Di	20.0	Officos
Soil Concentration:	105.00		
Soil Concentration:	105.00		
D F 10 IN (TDII / //			
Predicted Ground Water TPH (ug/l:	399	Ī	
	1 00		
HI @ Predicted G.W. Concentration:	1.00		
HI @ Predicted G.W. Concentration:	1.00		
HI @ Predicted G.W. Concentration:	1.00	_	
Volumetric NAPL Content, QNAPL :	0.000		
Volumetric NAPL Content, QNAPL : NAPL Saturation (%), QNAPL/n:	0.000 0.03%		
Volumetric NAPL Content, QNAPL : NAPL Saturation (%), QNAPL/n: Type of model used for computation:	0.000 0.03% 4-Phase Model		
Volumetric NAPL Content, QNAPL : NAPL Saturation (%), QNAPL/n: Type of model used for computation: Computation completed?	0.000 0.03%		
Volumetric NAPL Content, QNAPL: NAPL Saturation (%), QNAPL/n: Type of model used for computation: Computation completed? TPH Distribution @ 4-phase in soil pore system:	0.000 0.03% 4-Phase Model Yes!		
Volumetric NAPL Content, QNAPL : NAPL Saturation (%), QNAPL/n: Type of model used for computation: Computation completed?	0.000 0.03% 4-Phase Model Yes!	in Solid	: 25.49%
Volumetric NAPL Content, QNAPL: NAPL Saturation (%), QNAPL/n: Type of model used for computation: Computation completed? TPH Distribution @ 4-phase in soil pore system:	0.000 0.03% 4-Phase Model Yes!	in Solid	: 25.49%

Total Mass distributed in Air Phase: 0.62%

Soil Concentration = 105.00

Gasoline composition is fresh product weathered until 100 PPM in the soil will pass, simulated by removal of mass in dissolved and vapor phases by successive model runs. This composition represents highly weathered gasoline with no detectable benzene in the soil.

This is a summary sheet from an Excel program created by Hun Seak Park while at the Pollution Liability Insurance Agency (PLIA) and modified by Ecology staff. For this particular composition, the allowable soil concentration is controlled by the predicted hazard index of the gasoline mixture in the ground water.