

Tire Wear Particles and Associated Chemicals in the Environment

Thorsten Reemtsma

www.ufz.de

Additives in Tires

Class of chemicals	Chemicals*	function	1% Styrene-butadien (SBR) Eutadiene rubber
phenylendiamines	6-PPD, 7-PPD, IPPD, BENAPT	antioxidants	4% = Filler (Silica) = Oil
benzothiazoles	OBS, CBS, MTBT etc	vulcanization accelerators	34%
methoxymethyl melamines	HMMM etc	adhesive	13% Zinc-Oxide Steeric acid
guanidines	DPG	vulcanization accelerators	

- *) and their transformation products formed during tire production and use
- Tire and Road wear particles (TRWPs) contain constituents
 - of tires
 - and of roads!

Phenylendiamines as Antioxidants

6-PPDQ – Aspects of This Presentation

- Amounts
- Reactivity
- Availability

Amounts – What are we talking about?

Region	tire wear emission rates [x10 ³ t/a] ^a						
	passenger cars	trucks ^b & busses	urban	rural	highway	total	6-PPD
EU (2014)	264 ^{c, d}	1063 ^{c, d}	n/a	n/a	n/a	1327 ^{c,d}	13
Germany (2014)	52	81	40	45	48	133	
USA (2010)	500	620	750	370		1120	11

Wagner et al. (2019) Water Research 139, 83-100

- Assuming 1% of 6-PPD in tire rubber
- LC₅₀ of 6-PPDQ for coho salmon: 95 ng/L
 - Tian et al. (2022) Environ. Sci. Technol. Lett.
- How do 11 x 10³ t/a of 6-PPD potentially (!) spread with TRWPs on roads in the US
- compare to 95 ng/L of 6-PPDQ toxic to coho salmon in surface water?

www.ufz.de

Determination of TRWPs in the Environment – Analytical Challenges

TRWPs difficult to detect

- Py-GC-MS
 - Information on the amount of rubber (SBR/NR)
- Single particle analysis (SPA)
 - Kovochich et al. (2021) Environ. Sci. Technol. Lett. 8, 1057.
- Zn after density separation
 - Kloeckner et al. (2019) Chemosphere 222, 714.
- Organic markers
 - e. g. Kloeckner et al. (2021) Environ. Sci. Technol. 55, 11723

Challenges

- Influence of mineral matrix on monomer formation
- Monomer formation from organic matter
- Effort and costs

- Appropriate density window for aged TRWPs
- Limited sensitivity
- Not established
- Once released from TRWPs chemicals move around independently

Oxidative Abiotic Transformation of 6-PPD

Oxidative Abiotic Transformation of 6-PPD

Leaching of Chemicals from Tire Particles

Leaching of Chemicals from Tire Particles

6-PPD and Transformation Products in Snowmelt

Aging of TRWPs

• Limited knowledge on extent and importance of aging effects in the environment

www.ufz.de

Processes Affecting 6-PPDQ Content in a TRWP

6-PPDQ Concentration in Surface Water

Influencing factors

- Amount of TRWPs deposited at a given site
- 6-PPD concentration in TRWP
- Diffusion rate to TRWP surface
- Rate of transformation to 6-PPDQ
 - Rates of competing transformations
- Rate of 6-PPDQ release from TRWP into surrounding water
- Exchange of water from the boundary layer with the bulk water
- Dilution factor with bulk water

Possible measures

- Reduced by various measures
 - > e.g. street cleaning, runoff treatment, etc
- Substitution (but avoid regrettable substitution!)
- Slowed down by reduced oxygen availability
 e.g in sediments
- Reduced by TRWPs being burried in sediments

Conclusions? / Guesses!

- Most transport of chemicals from TRWPs with road runoff occurs with the particulate phase rather than dissolved in water.
- Importance of dissolved phase increases with polarity of chemicals
- About 10 x 10³ t/a of 6-PPD would be spread with TRWPs in the US.
 - If not transformed beforehand during use
- 6-PPD in TRPWs only partially transformed into 6-PPDQ.
 - This proportion is, likely, quite variable.

- Retaining TRWPs from road runoff certainly reduced the load of 6-PPD and 6-PPDQ arriving at surface waters.
 - There are several good reasons for runoff treatment.
- Burial of TRWPs in sediments should slow down the formation and the release of 6-PPDQ.

Acknowledgements and Contact

- Group members
 - Aurelio Foscari, Philipp Klöckner, Bettina Seiwert, Stephan Wagner, Steffen Weyrauch
- Cooperation partners
 - Mike Kovochich (CCR)

Contact

- Thorsten Reemtsma
- Helmholtz Centre for Environmental Research. Department of Analytical Chemistry

HELMHOLTZ

Centre for Environmental Research

- Leipzig, Germany
- thorsten.reemtsma@ufz.de
- http://www.ufz.de/analytics
- Kloeckner et al. (2019) Tire and road wear particles in road environment Quantification and assessment of particle dynamics by Zn determination after density separation. Chemosphere 222, 714.
- Kovochich et al. (2021) Characterization of individual tire and road wear particles in environmental road dust, tunnel dust, and sediment. Environ. Sci. Technol. Lett. 8, 1057.
- Wagner et al. (2021) Aging of tire and road wear particles in terrestrial and freshwater environments A review on processes, testing, analysis and impact. Chemosphere 288, 132467.
- Kloeckner et al.. (2021) Organic markers of tire and road wear particles in sediments and soils: Transformation products of major antiozonants as promising candidates. Environ. Sci. Technol. 55, 11723.
- Seiwert et al. (2022) Abiotic oxidative transformation of 6-PPD and 6-PPD guinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater. Water Res 212, 118122. www.ufz.de

16