
Analyzing and applying cost information in restoration planning

Braeden Van Deynze, Ph.D. UW School of Marine & Environmental Affairs

6PPD Spatial PAC – Mar. 30, 2022

Overview of Talk

- 1. Some theory: What are costs and why do we care
- 2. Measuring costs: Fish passage case study
- 3. Early thoughts: Cost information in a 6PPD context

Why is cost information necessary?

Goals of conservation planning:

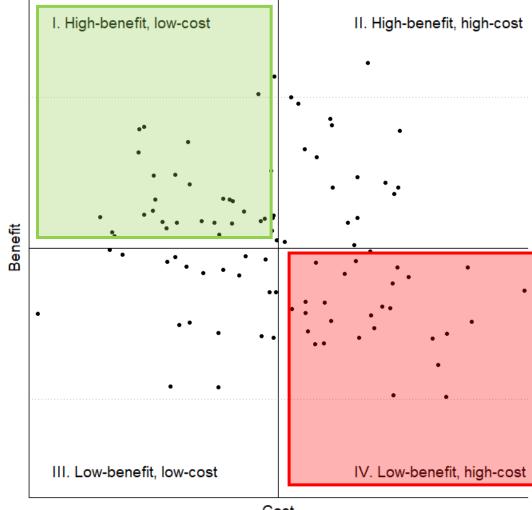
Provide the **most environmental benefit** for the **least cost**

or...

Achieve environmental targets at the least cost

or...

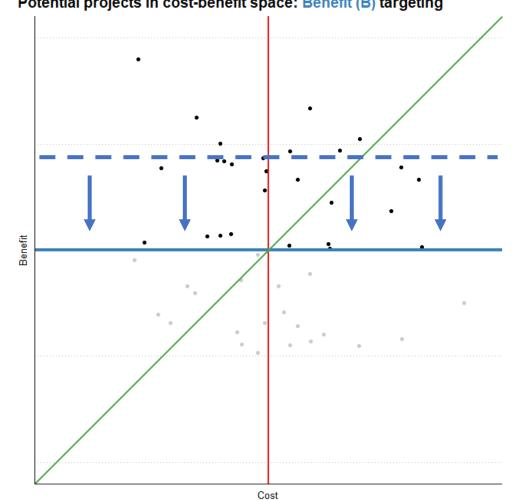
Provide the **most environmental benefit** within **the budget**


Regardless of formulation, requires knowledge of **costs** and **benefits** of any alternative course of action

Motivation: When is cost info important?

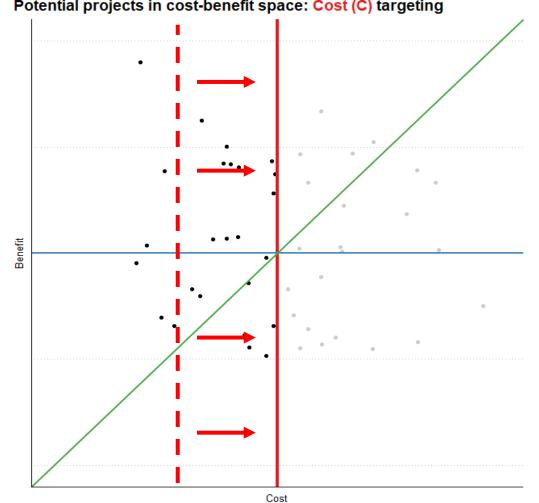
Goal: Most benefit within budget

Based on Babcock et al., 1998, Land Econ.


Potential projects in cost-benefit space

Cost 4 Recreation of figures from of Babcock et al. (1997)

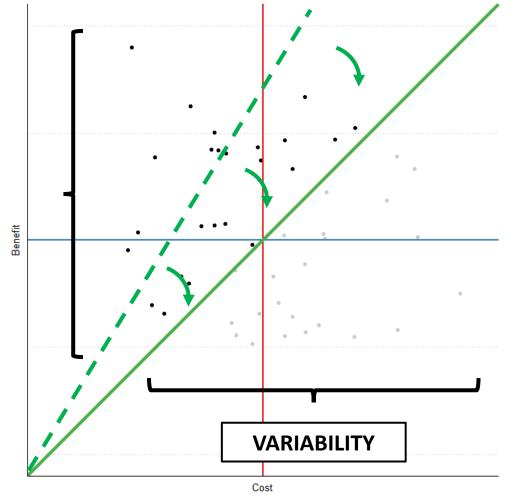
Systems that favor...


benefits (most habitat first) VS. costs (least expensive first) ...will select different projects

Potential projects in cost-benefit space: Benefit (B) targeting

Systems that favor...

benefits (most habitat first) VS. costs (least expensive first) ...will select different projects

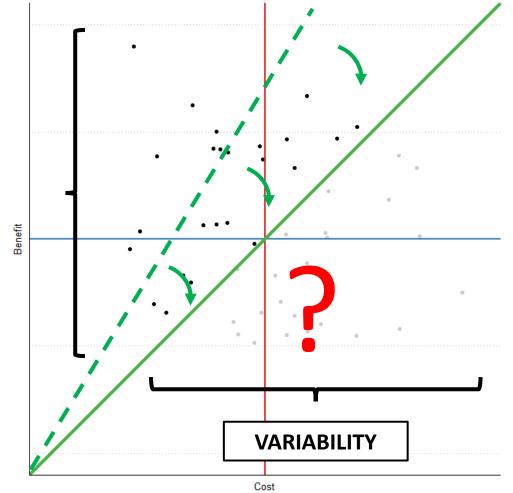

Potential projects in cost-benefit space: Cost (C) targeting

Systems that favor...

benefits (most habitat first) vs. costs (least expensive first) ...will select different projects

Which is closer to **optimal** (full information) depends on relative **variability**

- High variability means identifying outliers is more important
- Ideally would implement cost screening in areas where costs are <u>highly variable</u>


Potential projects in cost-benefit space: Ratio (B/C) targeting

Systems that favor...

benefits (most habitat first) VS. costs (least expensive first) ...will select different projects

Which is closer to **optimal** (full information) depends on relative variability

- High variability means identifying ulletoutliers is more important
- Ideally would implement cost • screening in areas where costs are highly variable

Potential projects in cost-benefit space: Ratio (B/C) targeting

What are costs?

Types of costs

Planning costs Permitting, design, site access

Construction costs **←** Labor, materials, equipment

Deportunity costs

Other potential uses of space during and following construction

How costs scale

Fixed costs

Costs that can be shared across multiple sites Costs that are the same regardless of project size

Variable costs

Costs that must be incurred at every site Costs that scale with project size

How do costs enter the planning process?

Integrated vs. Parallel Ranking

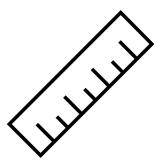
Integrated:

Directly weighted in priority scoring alongside benefit metrics

Parallel:

Separate analysis compared to benefits in a subsequent process

Early vs. Late


Earlier:

Can give a better idea of long-term budget needs, but data intensive

Later:

Get better picture of costs for fewer projects

Measuring costs

Goal: How much will <u>this</u> project cost? (Loaded question!)

Approaches:

Budgeting vs. Empirical

Are estimates based on input prices or are they based on historical data?

Conditional vs. Unconditional

Do estimates capture environmental variability?

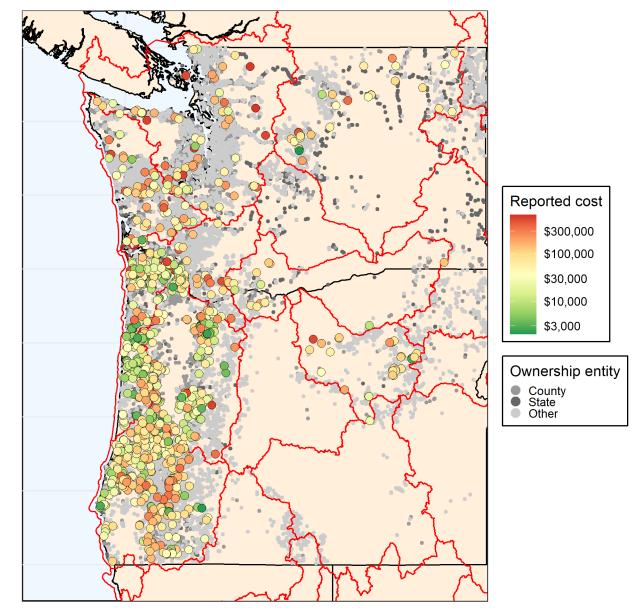
Planning vs. Engineering

How important is precision? Are preliminary designs and field surveys viable for all alternatives?

Key Message: Methods require tradeoffs, match method to needs

Case Study: Culvert Correction Costs

Data from PNSHP


- NWFSC-maintained clearinghouse for salmon habitat restoration projects
- 15 years of data (`01-`15)
- Lots of data (N = 1,236)

Two modeling approaches

- 1. Drivers: multiple linear regression
 - Easily interpretable
 - Good for hypothesis testing

2. Predictions: boosted regression trees

- Improved accuracy
- Incorporates information from 243 explanatory variables

Data Source: PNSHP culvert worksites; costs are in 2019 CPI-adjusted dollars

Based on work by Van Deynze, Fonner, Feist, Jardine, & Holland under revision

Additional Data: What drives culvert costs?

Stream variables: channel slope, bankfull width

Road variables: road material, speed limit class

Geospatial Data Matching Methods Streams & Roads: "snap" to nearest line Terrain: land cover/elevation raster cover Property: 500m-radius buffer Suppliers: custom density layer of firms

Terrain variables: terrain slope, elevation, land cover

Property ownership: housing density, distance to urban area, ownership of surrounding property (public/private/industrial)

Nearby suppliers: construction/forestry employment, distance to material/equipment suppliers

Project variables: # of worksites, distance between worksites

Cost Drivers:

Linear model structure

- $log(cost_i) = \alpha + x_i \beta + \mu_{year(i)} + \mu_{basin(i)} + \mu_{source(i)} + \varepsilon_i$
- Fixed effects for:
 - Year
 - Basin (HUC6)
 - Reporting source

Expensive projects

- <u>Steeper</u> & <u>wider</u> streams
- Larger, paved roads
- Surrounded by <u>development</u>, <u>cropland</u>
- Worksites further apart (<u>complexity</u>)

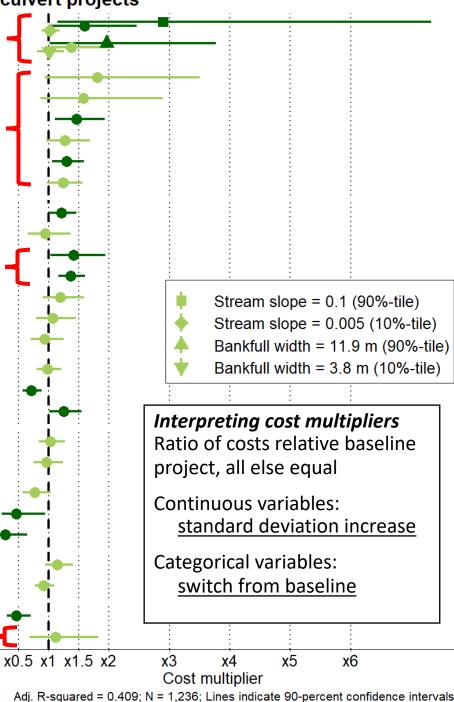
errain

Mgmt

Urban

Scale

Ϋ́


EÐ

Bankfull width-Stream slope-Road speed class: 55-64 mph-Road speed class: 41-54 mph-Road speed class: 31-40 mph Road speed class: 21-30 mph Road speed class: 6-20 mph Road paved (dummy)-Terrain slope-Elevation Land cover: Planted-cultivated Land cover: Developed Land cover: Shrubland-Land cover: Wetlands-Land cover: Herbaceous-Managed by individual or company-Managed by industry-Managed by non-industrial owner Housing density Distance to urban area Sand and gravel sales yards

Sand and gravel sales yards Construction equipment suppliers Concrete suppliers

> Ag/forestry employment Construction employment

Number of worksites Distance between worksites

Standardized cost multipliers for culvert projects

Cost Drivers:

Linear model structure

- $\log(cost_i) = \alpha + x_i \beta + \mu_{year(i)} +$ $\mu_{basin(i)} + \mu_{source(i)} + \varepsilon_i$
- Fixed effects for: •
 - Year
 - Basin (HUC6)
 - **Reporting source**

Cheap projects

- Surrounded by private forest
- Close to <u>construction equipment</u> & <u>concrete</u> suppliers
- More worksites (scale economies)

errain

ф

EÐ

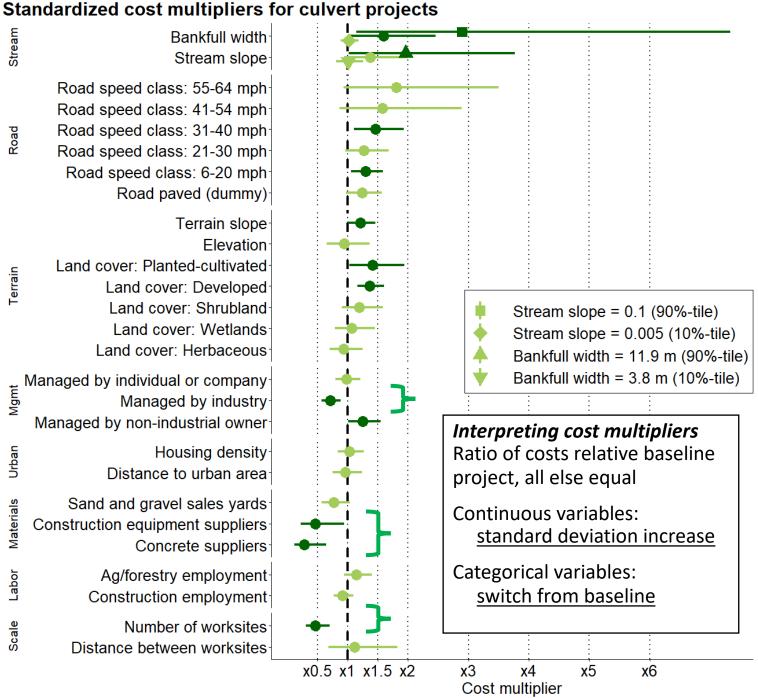
Urbar

Scale

Stream slope-Road speed class: 55-64 mph-Road speed class: 41-54 mph-Road speed class: 31-40 mph Road speed class: 21-30 mph Road speed class: 6-20 mph Road paved (dummy)-

Bankfull width-

Terrain slope-Elevation Land cover: Planted-cultivated Land cover: Developed Land cover: Shrubland Land cover: Wetlands-Land cover: Herbaceous-


Managed by individual or company-Mgmt Managed by industry-Managed by non-industrial owner

> Housing density Distance to urban area

Sand and gravel sales yards Construction equipment suppliers Concrete suppliers

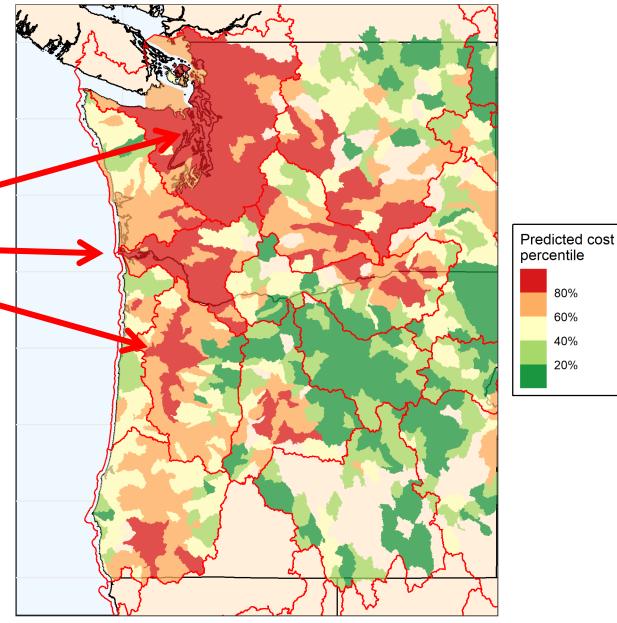
> Ag/forestry employment Construction employment

Number of worksites-Distance between worksites-

Adj. R-squared = 0.409; N = 1,236; Lines indicate 90-percent confidence intervals

Prediction Results:

Where are culvert improvements more expensive?


Puget Sound, Lower Columbia,

Upper Willamette expensive

- Relatively high development
- Larger roads along major interstate corridor

Washington Coastal, Northern Oregon **Costal and Eastern Oregon cheaper**

- Forest land cover more frequent
- Barriers tend to be on smaller, private roads

80%

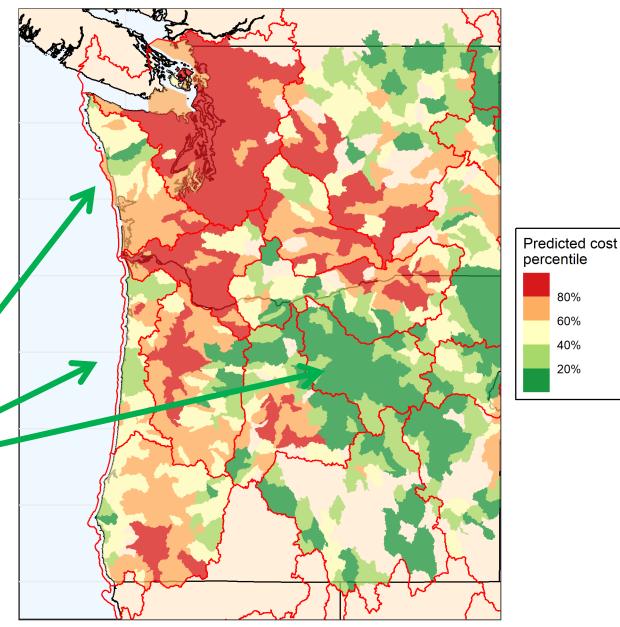
60% 40%

20%

Data Source: Predictions based on boosted regression tree fit; Project reporting source, scale, scope, and year effects are fixed for regularization

Prediction Results:

Where are culvert improvements more expensive?


<u>Puget Sound</u>, <u>Lower Columbia</u>, <u>Upper Willamette</u> expensive

- Relatively high development
- Larger roads along major interstate corridor

Washington Coastal, Northern Oregon

Costal and **Eastern Oregon** cheaper

- Forest land cover more frequent
- Barriers tend to be on smaller, private roads

Data Source: Predictions based on boosted regression tree fit; Project reporting source, scale, scope, and year effects are fixed for regularization

Costs in a 6PPD Prioritization Context

Challenge: Still early on in learning about effectiveness of interventions

- \rightarrow Not a lot of data from historical projects
- → Best practices may not be universal (costs, benefits, and ratio might vary across practices and environment)

Initial Thoughts:

- 1. Identify potential cost drivers from other contexts (culverts, road construction)
- 2. Consider ballpark estimates (relative, ranges) for selected practices in representative context(s)
- 3. Issue call to track costs consistently and transparently across the state (lacona et al., 2018, Cons. Bio.)

Thank you!

Braeden Van Deynze, PhD University of Washington vandeynz@uw.edu