

Presentation of the Findings of the Chehalis River Fish Population Impact Study

Presented by

Paul Schlenger and Bob Montgomery

April 19, 2012

Overview of Presentation

- Review of Scope of Work and Process
- Results of Fish Study Analysis Components
 - Hydrology
 - Water Quality
 - Geomorphology
 - Fish Habitat Modeling (PHABSIM)
 - Fish Habitat Inventory of Upper Watershed (HEP)
 - Fish Population Modeling (SHIRAZ)
- Questions and Discussion

Scope of Fish Study

- To characterize the magnitude of potential impacts that a flood storage facility on the upper mainstem Chehalis River could have on anadromous salmonid populations
- Study area defined as mainstem upstream from Porter (approximately river mile 33)
- Three salmonid species
 - Spring Chinook salmon
 - Coho salmon
 - Winter steelhead
- Scoped as a 9-month study

Process

- Complete the analysis using available data or data that could be collected or modeled in one year
- Reached out to people who have worked in the basin for data on salmonid populations and habitat in the study area
- Draft report released in November 2011
- Comments received in January 2012
- Final report released in April 2012

Organizations That Submitted Comments

- WA Dept. of Fish and Wildlife
- WA Dept. of Ecology
- WA Dept. of Transportation
- Confederated Tribes of the Chehalis Reservation
- City of Chehalis
- Wild Game Fish Conservation International
- Lewis County PUD
- Quinault Indian Nation

General Comments Received

- A more detailed study would be necessary before a dam was approved and permits obtained
- Further refinement of dam configuration and operations would be necessary to avoid/minimize detrimental impacts and maximize beneficial impacts
- Fish passage survival rate estimates are too high
- Impacts of dam on fish populations are too low, especially for steelhead

Study Approach

- To use applicable existing and new data to characterize habitat conditions in the basin that contribute to salmon viability and would potentially be impacted by a dam
 - Hydrology and Hydraulics (water flow)
 - Water Quality (temperature)
 - Geomorphology (sediment transport)
 - Physical Habitat Simulation (fish habitat)

Study Approach

Use of Hydrologic and Hydraulic Models

- Effect on flooding
- Reservoir water temperature modeling
- Chehalis River water temperature and dissolved oxygen modeling
- Sediment transport calculations
- Informs SHIRAZ fish population model

Models Used

- HEC-ResSIM for hydrologic routing through reservoir and to Doty gage.
- HEC-RAS to route flow from Doty gage downstream to Porter. Also used for water quality modeling.
- Spreadsheet sediment transport calculations.
- DSS is data storage and visualization software to work with HEC models.
- Lots of spreadsheets used to create graphics for report.

Dam Structure and Operations

Structure or Operational Element	Flood Storage Only (Single Purpose)	Multi-Purpose		
Structure Location	2 miles south of Pe EII (RM 108.3)	2 miles south of Pe Ell (RM 108.3)		
Structure Height	238 feet	288 feet		
Reservoir Surface Area (full)	1,000 acres	1,450 acres		
Fish Passage Facilities	Yes	Yes		
Sediment Transport Past Dam	No	No		
Large Woody Debris Transport Past Dam	No	No		

Dam Structure and Operations

Structure or Operational Element	Flood Storage Only (Single Purpose)	Multi-Purpose		
Total storage capacity (AF)	80,000	145,000		
Bottom elevation (ft)	1432	1432		
Spillway elevation (ft)	1650	1700		
Dam crest elevation (ft)	1670	1720		
Outlet capacity (cfs)	2,000	2,000		
Power plant minimum operating elevation (ft)	NA	1610		

Revised Flood Release – Flood Storage Only Alternative

- In draft report, releases were a constant 2,000 cfs during floods.
- For final report, releases are reduced when large floods are encountered. When inflow greater than 10,000 cfs occurs, releases are ramped down to 200 cfs for 3 days. Flows are then increased to 2,000 cfs.
- The maximum rate of change in reservoir outflow is 200 cfs/hour to prevent sudden surges of water downstream or cause fish stranding issues.

Flood Storage Reservoir Alternative

- Peak flows at Doty gage reduced by 60% for a 100-year flood event.
- Max. storage used in reservoir for 100-year flood is approximately 62,500 acre-feet.
- Flood levels in Chehalis-Centralia area are reduced by 1.6-2.0 ft for a 100-year flood.
- Flood levels in 1996 flood would have been reduced by 0.7-1.1 ft
- Flood levels in 2007 flood would have been reduced by 2.6-3.1 ft

100-year Hydrograph at Doty gage

100-year Hydrograph at Mellen Street

100-year Flood Profile, Newaukum River to Grand Mound Gage

1996 Flood Hydrograph at Mellen Street

1996 Flood Profile, Newaukum River to Grand Mound Gage

2007 Flood Hydrograph at Mellen Street

2007 Flood Profile, Newaukum River to Grand Mound Gage

Multi-purpose Reservoir Alternative

- Similar operation of flood storage will provide same flood reduction benefits as flood storage only reservoir alternative.
- Additional 65,000 acre-feet of storage is used for controlled release for instream flow augmentation and water temperature benefits. A fish flow release schedule was prepared based upon instream flow measurements taken for this study.
- Hydroelectric generation is a secondary purpose under this alternative.

Multi-purpose Reservoir Operations – Proposed Fish Flow Releases

Dates	Minimum Release (cfs) - Reservoir WSE above 1610 ft	Minimum Release (cfs) - Reservoir WSE below 1610 ft		
November-February (coho spawning)	250	250		
March-June (steelhead spawning)	200	200		
July (juvenile rearing)	200	160		
August-October (Chinook spawning)	200	160		

Notes: Minimum releases provide 80-90% of maximum Weighted Usable Area in Chehalis River between dam and the Newaukum River. WSE 1610 ft is minimum operating level for hydropower and equals 49,500 acre-feet of storage

Predicted flow at Doty gage

Flow Exceedance Curves at the Doty Gage

Flow Exceedance Curves at Grand Mound Gage

Flow Exceedance Curve at Porter Gage

Reliability of Fish Flows with Multipurpose Reservoir Alternative

Dates	Fish Flow Provided	% of Days Flow Met or Exceeded at Reservoir	% of Days Flow Met or Exceeded at Doty Gage
November-February (coho spawning)	250	98.8%	99.6%
March-June (steelhead spawning)	200	95.5%	100%
July (juvenile rearing)	200	100%	100%
August-October (Chinook spawning)	200	100%	100%

Modeling Limitations

- Hydrology uncertainty in USGS estimated peak flow for 2007 event and volume estimated by NHC creates uncertainty in the estimates of smaller floods
- Hydraulics HEC-RAS model cross-sections are old
- A different configuration of the reservoir or a different release schedule may change the results.

Sediment Transport and LWD

- Work included:
 - Gravel sampling
 - Aerial photo review
 - Estimating sediment transport capacity
 - Estimating sediment input from landslide data
 - Inventory of LWD

Sediment Transport and LWD

- Most coarse sediment and wood would be trapped by reservoir
- Peak flows reduced downstream of reservoir
- Bedload transport capacity substantially reduced between reservoir and confluence with South Fork Chehalis River, may result in aggradation in that reach and perhaps fining
- Effects muted in downstream direction, reset at RM 61.7 at bedrock grade control

Geomorphic Reaches

Bedload Transport Calculations

		Approximate	Existing Conditions	Flood Control Alternative		Multi-Purpose Alternative	
Geomorphic	River	Flow to Initiate Bedload	Bedload Transport	Bedload Transport	Change from	Bedload Transport	Change from
Reach	Mile	Transport (cfs)	Capacity (tons)	Capacity (tons)	Existing	Capacity (tons)	Existing
	101.8	7,000	16,900	1,100	-93%	1,100	-93%
	100.76	6,500	8,530	150	-98%	135	-96%
	100.44	4,300	29,700	460	-98%	410	-97%
2	100.16	9,400	1,590	0.1	-100%	0.2	-100%
	99.77	4,900	36,700	5,600	-85%	5,560	-80%
	98.47	2,000	6,550	2,560	-61%	2,050	-66%
	97.49	1,700	34,800	14,600	-58%	15,400	-49%
3	93.03	2,700	136,000	37,700	-72%	38,600	-67%
	90.11	35,700	3.7	0.1	-97%	0.1	-97%
	88.28	1,900	9,830	7,200	-27%	7,380	-24%
4	87.18	9,000	39,000	20,700	-47%	20,500	-41%
	85.05	59,000	82	4	-95%	5	-96%
	82.58	22,000	23,700	20,000	-16%	20,000	-97%
5	74.95	22,400	4,440	3,500	-21%	3,400	-17%
	69.52	37,400	5.2	1.9	-63%	1.4	-60%
6	60.51	17,600	5.2	4.5	-13%	4.8	-4.9%
	46.94	17,000	3,330	3,100	-7%	3,200	-2.50%
	34	22,000	5,630	4,600	-18%	4,700	-14%

Bedload Input and Transport Relative to Existing

Water Quality Studies

- Field sampling:
 - Temperature data loggers deployed at 10 locations
 - Low flow surveys conducted on Sep 13-14 and Oct 19-20
 (Q < 650 cfs at Porter for both events)
 - Two high flow sampling completed on Dec 2 and Feb 17
 (Q > 8000 cfs at Porter on both dates)
 - Tidbit data downloaded on May 31, 2011
 - Control of tidbits passed over to Ecology
- Modeling:
 - CE-QUAL-W2 model (reservoir temperature and DO)
 - HEC-RAS model (downstream temperature and DO)

Locations of Temperature/Water Quality Probes

Continuous Temperature Data Collected on the Chehalis River

- Modeling efforts completed in March
- Only data downloaded through October 2010 was used in modeling

Water Quality Modeling

- CE-QUAL-W2 model
 - Developed to include the anticipated inundation area
 - Used to simulate reservoir temperature and DO under a multi-purpose
 - A range of withdrawal elevations were evaluated
- HEC-RAS model
 - Developed from Chehalis River at Doty (RM 101.8)
 to Chehalis River at Porter (RM 32.28)
 - Model developed for April 2010 to March 2011 conditions
 - Calibrated to Ecology and Tidbit data from this project

Reservoir Water Temperature Profiles

• Model simulated the dynamics of thermal stratification successfully

Outflow Temperature and DO: Effect of Withdrawal Elevation

- Outputs from CE-QUAL model provided the upstream boundary temperature and DO in HEC-RAS model
- Withdrawal elevation affects the temperature and DO

Downstream Temperatures with and without Project

Downstream Dissolved Oxygen with and without Project

Effect of Withdrawal Elevations on Downstream Temperature

Summary

- Model simulations indicate that there is a potential for improvements in downstream temperature from multi-purpose reservoir alternative
 - Downstream temperatures are sensitive to withdrawal elevation
 - Bottom waters from reservoir result in cooler downstream temperatures
- Model simulated temperature used for developing inputs to Shiraz Model

Fish Habitat Availability

- Used Physical Habitat Simulation (PHABSIM) methods
 - Part of Instream Flow Incremental Methodology (IFIM) procedures
 - Followed guidelines developed by WA Dept. of Fish and Wildlife and WA Dept. of Ecology
 - WDFW and Ecology biologists participated in study site selection and study plan review
- PHABSIM predicts changes in habitat availability with changes in flow

Fish Habitat Modeling Using PHABSIM

 PHABSIM predicts changes in habitat availability with changes in flow

Fish Habitat Availability In Upper Watershed

- Used Habitat Equivalency Protocols to estimate habitat above proposed dam site
- Collected data on habitat types, fine sediment, substrate sizes, and availability of cover

Example of Salmonid Distribution

Fish Habitat Remaining In Upper Watershed above Proposed Dam Site

Charles and Life Chare	Percent of Existing Habitat Area Remaining		
Species and Life Stage	Flood Storage Only Dam	Multi-Purpose Dam	
Spring Chinook spawning	4	0	
Spring Chinook rearing	51	48	
Winter Steelhead spawning	45	42	
Winter Steelhead rearing	59	54	
Coho spawning	52	46	
Coho rearing	50	45	

Fish Population Modeling Using SHIRAZ

- Microsoft Excel-based modeling platform to relate habitat conditions to salmon production
 - Capacity (spawning and rearing habitat using PHABSIM and hydrology results)
 - Productivity (using water quality, geomorphology, sediment transport results)

Assessment Reaches

Changes Incorporated to Final Analysis

- Adjusted spawning distributions of coho salmon
- Incorporated stray rate estimates
- Used median flows instead of average flows
- Used peak periods rather than full life stage periodicity
- Adjusted functional relationships used for each species
- Removed "tributary" reach from model framework
- Removed spawning habitat capacity from those reaches the fish have not been documented spawning in

Changes Incorporated to Final Analysis

- Increased number of simulations to 50
- Analyzed 3 survival rate scenarios past dam: target, poor, and no survival
- Multi-purpose analysis refined to be based on water release schedule that maximizes fish habitat

Calibrated Model – Winter Steelhead

Future Scenarios Analyzed for Each Species

- Continuation of Existing Conditions (no dam)
- Flood Storage Only Dam
 - Assuming target fish passage survival rates
 - Assuming poor fish passage survival
 - Assuming no fish passage
- Multi-Purpose Dam with Optimized Flow Releases for Fish
 - Assuming target fish passage survival rates
 - Assuming poor fish passage survival
 - Assuming no fish passage

Predicted Future Conditions – Chinook Assuming Existing Conditions (no dam)

Predicted Future Conditions – Steelhead Assuming Existing Conditions (no dam)

Predicted Future Conditions – Coho Assuming Existing Conditions (no dam)

Changes to Scenarios with Dams

Model Input Changed	Flood Storage Only	Multi-Purpose
Decreased frequency and magnitude of high flow events	✓	✓
Decreased quantity of habitat available in the upper watershed	✓	✓
Decreased habitat quantity to account for loss of sediment bedload and large wood	✓	✓
Increased percent fine sediments in the downstream of the dam	✓	√
Increased base flows in the lower river		✓
Altered water temperatures downstream of dam		√

Predicted Winter Steelhead Spawners with Flood Storage Only Dam

 Target fish passage survival

 Poor fish passage survival

 No fish passage survival

Comparison of Predicted Spring Chinook Spawners Between Existing Conditions and with Optimized Multi-Purpose Dam

 Continuation of Existing Conditions (no dam)

Optimized Multi-Purpose Dam

Predicted Salmonid Abundance In Modeled Scenarios

Spring Chinook Salmon

Winter Steelhead

Coho Salmon

Summary of Predicted Population Effects

Dam Type	Fish Passage Analysis Scenario	Spring Chinook Salmon	Winter Steelhead	Coho Salmon
	ontinuation of Conditions	0%	0%	0%
Flood Storage Only Dam	Target Survival	-22%	-43%	-43%
	Poor Survival	-62%	-62%	-63%
	No Survival	-52%	-87%	-77%
Optimized Multi-Purpose Dam	Target Survival	140%	-32%	-28%
	Poor Survival	122%	-52%	-52%
	No Survival	146%	-81%	-67%

Summary Points

- Winter steelhead and coho salmon populations were predicted to be substantially reduced in either dam configuration
- Spring Chinook abundance was predicted to more than double (median) with Multi-Purpose Dam operated to maximize fish habitat through water releases. Any alterations to this would decrease predictions.

Questions and Discussion

Report available at:

https://projects.anchorqea.com/sites/chehalisfish

study

username: chehalisfish

password: upstream-4

